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Introduction

Causality

Causal relationships in terms of the potential outcomes notation: what would
happen to a given individual in a hypothetical scenario (potential outcomes in
the parallell worlds).

y1(T + C) y0(T + C)
T : y1(T ), ŷ0(T )
C : ŷ1(C), y0(C)

y1(T + C): the outcome of an individual had he received the treatment,
irrespective of whether he actually received.

y1(T ): observed outcome for the treated individuals (group T )
ŷ1(C): the outcome that would happen if the non-treated individuals are treated

y0(T + C): the outcome of an individual had he not received the treatment,
irrespective of whether he actually received.

y0(C): observed outcome for the non-treated individuals (group C)
ŷ0(T ): the outcome that would happen if the treated individuals are not treated

Average causal effect of the treatment on those who were treated :

y1(T )− ŷ0(T )

Differences in average potential outcomes for a fixed reference population.
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Introduction

Independence

E(yi|Di = 1)− E(yi|Di = 0)︸ ︷︷ ︸
Observed: y1(T )−y0(C)

=E(y1i|Di = 1)− E(y0i|Di = 1)︸ ︷︷ ︸
ATT: y1(T )−ŷ0(T )

+ E(y0i|Di = 1)− E(y0i|Di = 0)︸ ︷︷ ︸
Selection bias: ŷ0(T )−y0(C)

Selection bias: the sick (low y) are more likely than the healthy to seek
treatment (D = 1).
Random treatment assignment (y0, y1) ⊥ D solves the selection problem.

(y0, y1) ⊥ D implies the mean independence: E(y0|D) = y0, E(y1|D) = y1,
which further implies

E(y1i|Di = 1)− E(y0i|Di = 1)︸ ︷︷ ︸
ATT

= E(y1i)− E(y0i)︸ ︷︷ ︸
ATE

The effect of randomly assigned treatment on the treated is the same as the
effect of the treatment on a randomly chosen individual.
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Introduction

Conditional independence

The conditional independence assumption: (y1i, y0i) ⊥ Di|Xi.
D and (y0, y1) are allowed to be correlated, (y1i, y0i) ⊥ Di|Xi implies the
conditional mean independence:

E(y0|Di, Xi) = E(y0|Xi), E(y1|Di, Xi) = E(y1|Xi)

which further implies

E(y1i|Di = 1, Xi)− E(y0i|Di = 1, Xi)︸ ︷︷ ︸
ATT

= E(y1i|Xi)− E(y0i|Xi)︸ ︷︷ ︸
ATE

Notice that the expectation is taken over the distribution of X, estmating
ATE will require being able to observe both control and treated units for
every outcome on X. → The overlap assumption in matching.
Control for covariates can increase the likelihood that regression estimates
have a causal interpretation.
The conditional independence assumption is fundamentally untestable
because we only observe (y,D,X)
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Introduction

Exogenous treatment

Exogenous treatment: the selection into treatment is assumed to be
exogenous.
The causal interpretation in this case is based on the conditional independece
assumption: conditional on enough controls, any selection into treatment is
uncorrelated with the potential outcomes.
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RCT

Difference in Means

When the strong treatment assignment assumptions for causal inference in
RCTs are met ...
Treatment effects in RCT:

αATE =
1

N

N∑
i=1

y1i −
1

N

N∑
i=1

y0i

αATT =
1

N1

∑
i:Di=1

y1i −
1

N1

∑
i:Di=1

y0i

t-test of the null (α = 0) is a test of differences in means, H0 : µ1 − µ0 = 0.
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Matching

Data

matching.dta: a subset of Lalonde (1986) data.
Source: the National Supported Work (NSW)
Causal relationship of interest: effects of on-the-job training on labor market
outcomes
Treatment: on-the-job training (w = 1) lasting between 9 months and one
year (1976-1977)
Sample size: treatment - 185, controls - 260
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Matching

Matching

Regressions (including the binary treatment indicator as a regressor) and
matching are both control strategies, the core assmption (conditional
independece) underlying causal inference is the same for the two strategies.
Difference: whether the counterfactual is identified or not.

Matching amounts to covariate-specific treatment-control comparisons,
weighted together to produce a single overall average treatment effect.
Regression (including the binary treatment indicator as a regressor) is not
robust to substantially different control and treatment groups (e.g., C:
millionaires, T: workers, D: on-the-job training).
Matching is by design robust to outliers, whose influence is down-weighted in
matching.

Matching formula:

α̂M
ATE =

1

N

{
N∑
i=1

Di[yi − ŷ0(Xi)] + (1−Di)[ŷ1(Xi)− yi]

}
ŷ0(Xi)|Di = 1: matched counterparts in the control group for the treated
individual
ŷ1(Xi)|Di = 0: matched counterparts in the treatment group for the
non-treated individual
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Matching

Identifying Assumptions

1 Overlap:

0 < P(D = 1|X) ≡ π(X) < 1

For each value of X there are both treated (P > 0) and nontreated (P < 1)
cases.

2 Conditional independence:

(y0, y1) ⊥ D|X ⇔ (y0, y1) ⊥ D|π(X)

Participation in the treatment program does not depend on outcomes, after
controlling for the variation in outcomes induced by differences in X.

3 Regressor balance (a testable hypothesis):

D ⊥ X|Matching

A well-specified matching model should balance the covariates, that two
groups should look identical in terms of their X vector
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Matching

Measures

Matching measures:
1 regressors;
2 propensity score.
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Matching

Propensity score

Propensity score: π(X) ≡ E(D|X) = P(D = 1|X)

The Propensity Score Theorem (Rosenbaum and Rubin, 1983)

Suppose the conditional independence assumption holds such that
(y0, y1) ⊥ D|X. Then (y0, y1) ⊥ D|π(X).

For proof, it’s enough to show that P [Di = 1|yji, π(Xi)] = π(Xi) does not
depend on yji, j = 0, 1.
π(X) is a sufficient statistic for the distribution of D by construction.
The propensity score theorem says that you need only control for covariates
that affect the probability of treatment. The only covariate you really need to
control for is the probability of treatment itself.
Propensity score matching : first, π(Xi) is estimated using some kind of
parametric model, say, logit or probit. Then estimates of the effect of
treatment are computed by matching based on some algorithm.
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Matching

Algorithms

Various matching algorithms can be used to find potential matches based on
different measures:

1 Exact matching: practicable when the vector of covariates is discrete and the
sample contains many observations at each distinct value of Xi.

2 Nearest-neighbor matching: taking each treated unit and searching for the
control unit with the closest propensity score. In the Nearest-Neighbor
method, all treated units find a match, but could be a fairly poor match,
Kernel matching provides a solution to this problem.

3 Kernel matching: all treated are matched with a weighted average of all
controls (with weights that are inversely proportional to the distance between
the propensity scores of treated and controls).
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Matching

k Nearest-neighbor matching

Each observation is matched with k observations (k closest individuals to i in
propensity score) from the other treatment level. The k matches for
individual i are denoted by set Ji.
The matching estimator imputes the potential outcomes as

ŷi(0) =

ß
yi, if Di = 0

1
k

∑
j∈Jj

yj , if Di = 1

and

ŷi(1) =

ß 1
k

∑
j∈Jj

yj , if Di = 0

yi, if Di = 1

where k ≤ N0, k ≤ N1, N0 and N1 are the number of subjects in the control
group and the treatment group, respectively.
This leads to the matching estimator for the ATE and the ATT :

ATEM =
1

N

N∑
i=1

(ŷi(1)− ŷi(0)) , ATTM =
1

N1

∑
i:Di=1

(yi − ŷi(0))
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Matching

Nearest-neighbor matching

For any given subject i, there could be no counterfactual available for
estimating the treatment effects. This could happen if there is insufficient
overlap of the distribution of propensity between the treatment groups. In
the interests of obtaining better balance, or sufficient overlap, such an
observation may be dropped.
After matching, the resulting trimmed (smaller) sample is expected to yield a
less biased estimate of the treatment effects. Smaller bias is traded off
against a wider confidence interval resulting from higher variance due to
shrinkage in sample size.
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Matching

Nearest-neighbor matching

Matching is more likely to be poor if there are more than one continuous
variable and cause a bias in the treatment effects estimators.
Bias adjustment: to balance the remaining imbalance in X (or part of the
regressors) after matching
. teffects nnmatch (y $x) (d), biasadj(age re74)
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Matching

Kernel matching

Kernel matching uses weighted averages of all individuals in the control group
to construct the counterfactual outcome. The weight of each control
observation j in the counterfactual for observation i is

w(i, j) =
k
Ä
π(Xj)−π(Xi)

h

ä
∑

j ̸=k:Dj=0 k
Ä
π(Xk)−π(Xi)

h

ä
where k is a kernel function which downweights distant observations and h is
a bandwidth parameter. Increasing the bandwidth h will decrease the
variance (a smoother density) but increase bias (underlying features could be
also smoothed away).
The matching estimator imputes the missing potential outcomes as

ŷi(0) =

ß
yi, if Di = 0∑

j:Dj=0 w(i, j)yj , if Di = 1

ŷi(1) =

ß∑
j:Dj=1 w(i, j)yj , if Di = 0

yi, if Di = 1

Based on the potential outcomes, we can easily calculate the ATT and ATE.
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Matching

Propensity score matching
k Nearest neighbor matching

Message from the left panel (before matching): the propensity score overlap
is essentially in the range of 0.25 to 0.65. Without matching, analysis (or at
least in a robustness test) might best be restricted to this range.
Message from the right panel (after matching): a clear overlapping of the
distributions is achieved by matching (notice the x-axises).
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Matching

Propensity score matching
k Nearest neighbor matching

Region A: Non-treated individuals in this region find no matches in the
treated set, so they are missing from the distributions on the right panel.
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Matching

Propensity score matching
k Nearest neighbor matching

Region B: There are more non-treated individuals than treated individuals in
this region. If k = 1 and more than one counterparts are found in the control
group, either one of them is picked, or the arithmetic mean is taken across
the multiple counterparts (equivalent). The distribution for the control group
of this region is then trimmed.
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Matching

Propensity score matching
k Nearest neighbor matching

Region C: There are more individuals in the treated group than in the control
group. Therefore each control individual will be matched with more than one
treated individuals, the control distribution is lifted up from the left panel to
the right panel for this region.
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Matching

Propensity score matching
k Nearest neighbor matching

Region D: The treated individuals in this region find no counterpart in the
control group, and are dropped in the left panel. There is no matching
estimate for the treatment effects on this region.
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Matching

Propensity score matching

Matching procedure #Treated #Non-treated ATT Std. Err.

Nearest neighbor 185 152 2.93 0.75
Kernel 185 248 1.92 0.65

Lower variance is achieved by kernel matching because more information is
used (but there can be bad matches): NN matching is local matching, Kernel
matching does global matching.
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Instrumental variables

Instrumental variables
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Instrumental variables

Identification of Causal Effects using IV

Conditional independence is not satisfied: (y0i, y1i) ̸⊥ Di|Xi

Exogenous source of variation Zi such that (y0i, y1i) ⊥ Zi|Xi and Zi ̸⊥ Di|X
IV estimate: αIV

LATE = Cov(Zi,yi)
Cov(Zi,Di)

L for Local in LATE: LATE measures the treatment effect on the “compliers”
(at the margin of participating) that are induced to participate in the
treatment as a result of the change in Z.
Compliers (comply with the treatment assignment); always-takers (received
treatment regardless of eligibility); never-takers (refuse treatment regardless
of eligibility); and assume there are no defiers.
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Instrumental variables

Estimation

Probit 2SLS:
1 Participation equation using Probit - predicted probability p̂
2 Predict participation indicator D̂ using p̂
3 Outcome equation using OLS of y on observables and D̂

Stata Commands:
IV Probit
. ivprobit depvar (endog=exog) $x
where depvar is the dependent variable, endog is the endogenous regressor,
exog is the instrument, and x is the vector of covariates.
Visualize marginal effects
. margins, at(endog=(min(step)max)) predict(pr)
. marginsplot

27 / 28



References

Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: methods and
applications. Cambridge university press. Chapter 25.
Abadie, A., & Imbens, G. W. (2006). Large sample properties of matching
estimators for average treatment effects. econometrica, 74(1), 235-267.
Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An
empiricist’s companion. Princeton university press.
Wooldridge, J. M. (2010). Econometric analysis of cross section and panel
data. MIT press. Chapter 21.
Imbens, G. W. (2015). Matching methods in practice: Three examples.
Journal of Human Resources, 50(2), 373-419.
Abadie, A., & Imbens, G. W. (2016). Matching on the estimated propensity
score. Econometrica, 84(2), 781-807.
Cameron, A. C., & Trivedi, P. K. (2022). Microeconometrics using stata
(Second Edition). Stata press. Chapters 24, 25.
Hansen, B. E. (2022). Econometrics. Chapters 18, 21.


