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Regression Discountinuity Sharp Design

Regression Discountinuity

Regression continuity (RD) research designs exploit precise knowledge of the
rules determining treatment (some rules are arbitrary and therefore provide
good experiments).
RD comes in two styles: fuzzy and sharp.

The sharp design can be seen as a selection-on-observables story.
The fuzzy design leads to an instrumental variables (IV) type of setup.
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Regression Discountinuity Sharp Design

Sharp RD

Sharp RD is used when treatment status is a deterministic and discontinuous
function of a running variable zi. Suppose, for example, that

Di =

®
1, if zi ≥ z0

0, if zi < z0

where x0 is a known threshold or cutoff.
Deterministic : once we know zi, we know Di.
Discontinuous: no matter how close zi gets to z0 (from the left, in this
example), treatment is unchanged until zi = z0.
Example: a standardized test for college entrance, sharp RD compares the
post college performance of students with scores just above and just below
the threshold.
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Regression Discountinuity Sharp Design

Sharp RD

Consider the following regression that formalizes the RD idea,

yi = f(zi) + ρDi + ηi

where ρ is the causal effect of interest, and Di = 1(zi ≥ z0).
As long as the control function f(zi) is continuous in a neighborhood of x0,
it should be possible to estimate this model.
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Regression Discountinuity Sharp Design

Sharp RD

For example, consider modeling f(zi) with a pth-order polynomial,

yi = α+ β1zi + β2z
2
i + ...+ βpz

p
i︸ ︷︷ ︸

=f(zi)

+ρDi + ηi

A generalization of RD model allows different trend functions f0(zi) for
E(y0i|zi) and f1(zi) for E(y1i|zi).
Calculate the treatment effect:

αATE,RD = lim
z→z+

0

E[yi|zi = z]︸ ︷︷ ︸
≃E[y1i|zi]

− lim
z→z−

0

E[yi|zi = z]︸ ︷︷ ︸
≃E[y0i|zi]
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Regression Discountinuity Sharp Design

Sharp RD

Linear E(y0i|Xi)
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Regression Discountinuity Sharp Design

Sharp RD

Nonlinear E(y0i|Xi): third-degree polynomials
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Regression Discountinuity Sharp Design

Sharp RD

Local polynomials for f0 and f1
(you can set different kernels, bandwiths and degrees for them)
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Regression Discountinuity Sharp Design

Identification

The regression discontinuity design identifies the conditional ATE at the
treatment cut-off.
What we need for identification is the continuity of f1(z) and f0(z): which
means that the conditional expectation of the untreated and treated outcome
are continuously affected by the running variable.
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Regression Discountinuity Sharp Design

Example
Ursprung and Zigova (2020)

Context: You are interested in studying the effect of an artists death on the
price of their artwork.
Data: You have data on the auction sales of a number of renowned artists
through their life-time and after their death. Each observation is an artwork
sold (e.g. a painting sold at $10 000 when the artist was 35 years old,
another sold at $20 000 two years after the same artist’s death etc.).
The main design: How would you estimate the effect using regression
discontinuity?

What is your running variable (z)?
Illustrate how your data would look like if the death of an artist causes prices
to increase, in particular plot y and D against z.
Is this a sharp or fuzzy design?

The covariates:
You also have some variables X on the characteristics of the painting (e.g.
size, medium, motif etc.). Does it makes sense to include these in the
estimation? and how?
How do you expect X to behave around the z cut-off if the RD design is valid?

10 / 23



Regression Discountinuity Fuzzy Design

Sharp RD vs. Fuzzy RD

Discontinuity in D
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Regression Discountinuity Fuzzy Design

Fuzzy RD

Now, there is a jump in the probability in the probability of treatment at z0,
such that

P(Di = 1|zi) =
®
g1(zi), if zi ≥ z0

g0(zi), if zi < z0

where g1(z0) ̸= g0(z0). We assume g1(z0) > g0(z0) so that zi ≥ z0 makes
treatment more likely.

Nonparametric estimation (Kernel, Wald, etc.) of limit α = y+−y−

D+−D− : can be
applied to both sharp RD and fuzzy RD, identifies treatment effects only
locally at the point of discontinuity.
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Regression Discountinuity Fuzzy Design

Fuzzy RD

IV estimation: the discontinuity becomes an instrumental variable for
treatment status instead of deterministically switching treatment on or off.
The ATE at the cutoff:

αATE,RD =
E(y|z+0 )− E(y|z+0 )
π(z+0 )− π(z−0 )

In sharp RD, π(z+0 )− π(z−0 ) = 1− 0 = 1.
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Regression Discountinuity Fuzzy Design

Example
Oreopoulos (2006)

Effects of interest: returns to (compulsory) schooling
Context: UK increased the minimum school leaving age from 14 to 15 in
1947
Why fuzzy? The constraint is only binding for who would have left school at
14 without the change.
LATE or ATE: with about half the students in UK around 1947 leaving
school as soon as possible, the LATE from raising the school leaving age
should come close to the ATE.
Running variable: zi, calendar year (47 in data means 1947); z ≥ 47 (one is
aged 14 at or after 1947) fully predicts that the minimum school-leaving age
equals 15, and z < 47 (one is aged 14 before 1947) fully predicts that the
minimum school-leaving age equals 14.
Treatment: whether child attends school at age 15 (D = 1) or leaves at age
14 (D = 0)
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Regression Discountinuity Fuzzy Design

Discontinuity in D
Oreopoulos (2006)

The treatment variable Di has conditional density:

f(Di|zi) =
®
g1(zi), zi ≥ 47

g0(zi), zi < 47
, g1(47) > g0(47)

where zi ≥ 47 makes the treatment more likely. Instrument variable:

Si =

®
1, zi ≥ 47

0, zi < 47

It follows that

E(Di|zi) =
∫

Dif(Di|zi)dDi

=

∫
Di

[
g0(zi) +

(
g1(zi)− g0(zi)

)
· Si

]
dDi

= E(Di)
[
g0(zi) +

(
g1(zi)− g0(zi)

)
· Si

]
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Regression Discountinuity Fuzzy Design

Discontinuity in D
Oreopoulos (2006)

We repeat the last line here

E(Di|zi) = E(Di)
[
g0(zi) +

(
g1(zi)− g0(zi)

)
· Si

]
The dummy variable Si indicates the point of discontinuity in E(Di|zi).
To capture the non-linearity of the trend, we assume g1(zi) and g0(zi) each
be some reasonably smooth function, for example, a p-th order polynomial:

E(Di|zi) = E(Di)
[
β0 + β1zi + β2z

2
i + · · ·+ βpz

p
i

+
(
β∗
0 + β∗

1zi + β∗
2z

2
i + · · ·+ β∗

pz
p
i

)
· Si

]
From this (the relevance condition) we see that Si as well as the interaction
terms {ziSi, z

2
i Si, . . . , z

p
i Si} can be used as instruments for Di.
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Regression Discountinuity Fuzzy Design

Discontinuity in D
Oreopoulos (2006)

Discontinuity in D
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Regression Discountinuity Fuzzy Design

2SLS
Oreopoulos (2006)

1 The first stage of the 2SLS: discontinuity in D

Di = β̃0 + β̃1zi + β̃2z
2
i + · · ·+ β̃pz

p
i + γSi + ui (1)

2 The second stage of the 2SLS: discontinuity in y

Assume E(Y0i|zi) = h(zi), where h(zi) is also a p-th order polynomial of zi.

Yi = αiDi + h(zi) + ϵi

= αiDi + ρ0 + ρ1zi + ρ2z
2
i + · · ·+ ρpz

p
i + ϵi (2)

The fuzzy RD reduced form is obtained by substituting (1) into (2):

Yi =αi

[
β̃0 + β̃1zi + β̃2z

2
i + · · ·+ β̃pz

p
i + γSi + ui

]
+ ρ0 + ρ1zi + ρ2z

2
i + · · ·+ ρpz

p
i + ϵi

=θ0 + θ1zi + θ2z
2
i + · · ·+ θpz

p
i + ϵ̃
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Regression Discountinuity Fuzzy Design

Discontinuity in y
Oreopoulos (2006)

Discontinuity in y
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Difference-in-Differences

Difference-in-Differences
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Difference-in-Differences

The Simplest Case: 2 × 2

The basic DiD model is a two-way fixed effects model:

yit = αDit +X ′
itβ + νi + γt + εit
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Difference-in-Differences

Trend specification

Message from the graph:
1 strong visual evidence of treatment and control states with a common

underlying trend, and
2 a treatment effect that induces a sharp but transitory deviation from this trend.
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