
TA Session 3
Dynamic Discrete Choice: Full Solution

Microeconometrics II with Joan Llull
IDEA, Fall 2024

TA: Conghan Zheng

November 25, 2024

Rust (1987)

A Renewal Problem1

The choice: j ∈ {0, 1}
The maintenance manager decides whether to replace the existing bus engine
(dt1 = 1) in period t or keep it for at least one more period (dt0 = 1).
The tradeoff: engine replacement is costly, but the maintenance costs also
increase with use.

The state vector: (xt, εt), revealed to the individual at the beginning of t
xt: the accumulated milage since last replacement.
If the manager keeps the engine, the bus mileage xt advances; if the manager
replaces the engine, xt = 0.
Renewal : once the bus engine is replaced it is assumed to be “as good as new”
so the state of the system regenerates to the state xt = 0.
Buses may also be differentiated by a fixed characteristics included in x.
The unobservable states (choice-specific shocks) εt = {εt0, εt1} are i.i.d.
bivariate Type I extreme value distributed (T1EV).

1In this slides, I’m not using the same notation as in Joan’s lecture notes or as in the problem
set statement, to avoid giving you the exact solution in this tutorial. In your own solution, please
follow the problem set notation.

1 / 16

Rust (1987)

Dynamics

To free us from many computational challenges, we assume conditional
independence: F (xt+1, εt+1|dt, xt, εt) = Fx(xt+1|dt, xt)Fε(εt+1).
The loglikelihood function can be factorized as:

lnL =
∑
i

T−1∑
t

∑
j

ditj lnFtj(xi,t+1|xit; θ)︸ ︷︷ ︸
transition

+
∑
i

T∑
t

∑
j

ditj ln ptj(xt; θ)︸ ︷︷ ︸
choice prob.

The only essential difference between a estimating a static discrete choice
model using MLE and a estimating a dynamic model satisfying conditional
independence using MLE is that parameterizations of v based on u do not
have a closed form, but must be computed numerically.
Estimating Ftj(xt+1|xt): It’s identified for each (t, j) from the transitions, so
there is no conceptual reason for parameterizing this distribution.

2 / 16

Rust (1987)

State Space

The state space should be defined compatible to the transition matrix
Theoretically, for n states in space, you have a n× n transition matrix for
each (j, t), while you can average this matrix over t. And our case becomes
even simpler because we only have two actions.
A natural way to discretize the state space in the bus engine replacement
problem is to divide mileage into equally sized ranges.
In the Rust’s example, there are 90 bins of length 5,000, with a upper bound
of 450,0002 (then this upper bound will be the absorbing state).
The transition probability with this discretization becomes a 90 × 90 Markov
transition matrix.
Do we then need to estimate 90 × 90 = 8,100 parameters?

2In the data set actually no bus ever got more than 400,000 miles.
3 / 16

Rust (1987)

State Transitions

Consider a trinomial distribution on the set {0, 1, 2}, corresponding to the
mileage ranges [0, 5000], [5000, 10000], and [10000,∞], respectively.
And we define

φj = Pr(xt+1 = xt + j | xt, dt = 0), j ∈ {0, 1, 2}
Then the 90 × 90 discrete transition probability matrix for the uncontrolled
Markov process (i.e. assuming replacement never occurs) is given by:

F 0
xt,xt+1

=

φ0 φ1 φ2 0 . . . 0 0 0
0 φ0 φ1 φ2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . φ0 φ1 φ2

0 0 0 0 . . . 0 φ0 1− φ0

0 0 0 0 . . . 0 0 1

Whereas F 1

xt,xt+1
has only one element 1: if the replacement action is taken,

then xt = 0.
Then, for the entire transition distribution, you need to estimate three
numbers: φ0, φ1, and φ2.

4 / 16

Rust (1987)

Estimation
Transitions

A consistent estimator of F 0
xt,xt+1

can be obtained from the proportion of
observations in the (t, j = 0, xt) cell transitioning to xt, xt + 1, and xt + 2.
For example, part of the code in MATLAB:

% Among all obs that did not undergo replacement in the last period (TTT-
repl)

% Get transition probs by summing all 3 possible transitions and
% Dividing by the total no of obs
phi0 = sum(sum(d0))/(TTT-repl);
phi1 = sum(sum(d1))/(TTT-repl);
phi2 = sum(sum(d2))/(TTT-repl);
phi = [phi0 phi1 phi2];

% Create the uncontrolled transition matrix
F0 = zeros(90,90);
for i = 1:90

if i < 89
F0(i,i:i+2) = phi;

elseif i == 89
F0(i,i:i+1) = [phi0 1-phi0];

else
F0(i,i) = 1;

end
end

5 / 16

Rust (1987)

Value Function

The manager chooses {djt}j,t to maximize the expected discounted sum of
payoffs in the first period:

E

T∑

t=1

J∑
j=1

βt−1djt · [ujt(xt) + εjt]

∣∣∣∣∣∣x1

Formally the subjective discount factor β is redundant if the current period
payoff u is subscripted by t, we typically include a geometric discount factor
so that the infinite sums of utility are bounded and the optimization is well
posed.
For a stationary infinite horizon problem, age and time have no role.
Denote by dOt (xt, εt) the optimal decision rule at t which has J elements:
dOjt(xt, εt), j = 1, . . . , J .
The value function in period t, conditional on behaving according to the
optimal decision rule:

Vt(xt) ≡ E

T∑

τ=t

J∑
j=1

βτ−tdOjτ · [ujτ (xτ) + εjτ]

∣∣∣∣∣∣xτ

6 / 16

Rust (1987)

Optimization

Applying Bellman (1958) principle, when the state space is finite and
Euclidean, we have

Vt(xt) = E

∑
j

dOjt

ï
ujt(xt) + εjt + β

∫
Vt+1(x)dFjt(x, ε|xt, εt)

ò∣∣∣∣∣∣xt

(conditional
independence

)
=

∑
j

∫
ε

dOjt

ß
ujt(xt) + εjt + β

∫
x

Vt+1(x)dFjt(x|xt)

™
dF (ε)

The choice-specific conditional value function:

vjt(xt) = ujt(xt)︸ ︷︷ ︸
flow payoff of
action j at t

=E[ujt(xt)+εt|xt]

+β

∫
Vt+1(x)dFjt(x|xt)︸ ︷︷ ︸

The expected future utility
of behaving optimally from

period t + 1 and on

and the optimal decision rule:

dOjt(xt, εt) = 1 {vjt(xt, εt) ≥ vkt(xt, εt),∀k}
= ΠJ

k=11 {vjt(xt, εt) ≥ vkt(xt, εt)}
7 / 16

Rust (1987)

Conditional Choice Probabilities (CCP)

Given stationarity and the multivariate T1EV errors, the conditional choice
probability (CCP) of replacing the engine given x can be described by a
multinomial logit (McFadden, 1974).

The CCP is found by integrating the optimal decision rule doj over
(ε1, . . . , εJ) (Actually, one of the errors needs to be normalized, and you only
need to take J − 1 integrals.):

pj(x) ≡ P (d = j|x) =
∫
ε

doj(x, ε)f(ε) dε

=

∫
ε

ΠJ
k=11 {vj(x, ε) ≥ vk(x, ε)} f(ε | x) dε =

evj(x)∑
l e

vl(x)

where the denominator is the exponential of the inclusive value (you saw
this in the nested logit):

Vt = ln
∑
j

evjt(x)

The Euler constant is omitted as it doesn’t affect the maximization.
8 / 16

Rust (1987)

Conditional Choice Probabilities (CCP)

Specifically, the CCP of replacing the engine in Rust (1987):

p1(x) =

∫
ε

1{ε0 − ε1 ≤ v1(x)− v0(x)}f(ε | x) dε

=
ev1(x)

ev1(x) + ev0(x)
=

1

1 + ev0(x)−v1(x)

9 / 16

Rust (1987)

Full Solution Approach

Nested Fixed Point Algorithm (Rust, 1987):

Data:
{dt}, {xt}

Value Function
θu

Predicted CCP

Log-Likelihood
θu, θx

Transitions
θx

Inner Loop

Outer Loop

θu: parameters of the utility function
θx: parameters of the transition matrix.
“Full Solution”: the way we get CCP is by solving the model for every
parameter evaluation

10 / 16

Rust (1987)

Solving the Problem

Finite horizon (not our case)
To compute the optimum for T finite, we first solve a static problem in the
last period T , to obtain dOT (xT , εT) for all possible (xT , εT) in the state
space.
Then by backwards induction, in period t, j is chosen to maximize the
choice-specific conditional value function vjt(xt).

11 / 16

Rust (1987)

Solving the Problem

Infinite horizon or large T

In the stationary infinite horizon case, we assume ujt(x) ≡ uj(x).
Consequently, the expected utility in each period is bounded and the
contraction mapping theorem applies, proving dOt (x) → dO(x) for large T .
And V is given by the unique fixed point to the contraction mapping
Vt+1 = Vt → V = Γ(V) for large T :

Vt(xt) = ln
∑
j

evj(xt) = ln
∑
j

euj(xt)+β
∫
Vt+1(xt+1)dFj(xt+1|xt)

⇒ vj(xt) = uj(xt) + β

∫
Vt+1(xt+1)dFj(xt+1|xt)

= uj(xt) + β

∫
ln
∑
j

evj(xt+1)dFj(xt+1|xt)︸ ︷︷ ︸
≡EV (xt)

12 / 16

Rust (1987)

Solving the Problem

Specifically, in Rust (1987):

vj(xt) = uj(xt) + βEV (xt)

= uj(xt) + β

∫
ln
î
eu0(x)+EV (x) + eu1(0)+EV (0)

ó
dFj(x|xt)

as dt = 1 ⇒ xt = 0, xt+1 = (0, 1, 2) · (φ0, φ1, φ2)
′. And this is why in my

code on the next slide, EV (0) in calculating the log-sum is the first element
of the EV vector (ev).

13 / 16

Rust (1987)

Estimation
Value Function

For example, the valuefunction.m3 in MATLAB:
function [ev,count]=valuefunction(beta, theta, trans_mat)

% ... (some description)
tol = 1e-6; % tolerance level for the iterations
ev = zeros(90,1); % initialization, EV
rule=1; % convergence norm

while rule>tol
x = [1:1:90]’; % state vector, 90*1
c = 0.001*theta(2)*x; % maintainance cost, 90*1
exp1 = exp(-theta(1)+beta*ev(1)); % exp(v1), 1*1
exp0 = exp(-c+beta*ev); % exp(v0), 90*1

% update the value function (v0)
ev_new = trans_mat*log(exp1 + exp0); % 90*1

% update the norm
rule = norm(ev_new-ev);

% go to next iteration
ev = ev_new;

end
end

3You can put this function in a separate .m file and call it in the main script, or you can just
put it at the end of the main file. 14 / 16

Rust (1987)

Estimation
Log Likelihood

For example, part of log_lik.m in MATLAB:

for i=1:size(EExt,2) % loop over all i

st = state(:,i); % state, one column for each i (across t)
it = EEit(:,i); % action, one column for each i (across t)

for t=1:size(EExt,1) % loop over all t
if ~isnan(st(t))

% choice prob.
% payoff_diff = v1t - v0t
p1t = 1 - 1/(1+exp(payoff_diff(st(t))));

% log-likelihood contribution
f(t,i) = it(t)*log(p1t) + (1-it(t))*log(1-p1t);
end

end

end

15 / 16

References

Rust, J. (1987). Optimal replacement of GMC bus engines: An empirical
model of Harold Zurcher. Econometrica: Journal of the Econometric Society,
999-1033.
Rust, J. (2000). Nested fixed point algorithm documentation manual.
Unpublished Manuscript (6), 1-43.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd67e9b90445b47eee7c627beeb605739ee36248

