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Binary Outcome Models Introduction

Introduction

Data (TA2_1.dta): US individual data on labor force participation from the
Current Population Survey (CPS). 2010 cross-section, 16-64 years-old women.
Research question: We are going to study the determinants of the decision
to participate in the labor market for women. This choice is recorded by
dummy lfp (denoted by y).

y =

ß
1 with probability p
0 with probability 1− p

Limited dependent variable: y has support {0, 1}, and this restriction has
consequences for econometric modeling.
In regression analysis, we want to measure how response probability p varies
across individuals as a function of regressors X: P(y = 1|X) = p(X).
A traditional approach is parametric modelling with MLE. Two parametric
forms for p(X): logit and probit.
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Binary Outcome Models Latent Variable Interpretation

Random Utility Formulation

A decision-maker chooses between alternatives 0 and 1 according to which
has the higher utility. Outcome variable y indicates which alternative is
chosen.
The additive random utility model (ARUM) specifies the utilities of
alternatives:

U0 = V0(X) + ε0

U1 = V1(X) + ε1

where V s are deterministic components of utility (deterministic function of
data) and εs are random components of utility.
It follows that

y =

ß
1 if U1 ≥ U0

0 otherwise
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Binary Outcome Models Latent Variable Interpretation

Random Utility Formulation

P(y = 1|X) = P(U1 ≥ U0)

= P [V1(X) + ε1 ≥ V0(X) + ε0]

= P [ε0 − ε1 ≤ V1(X)− V0(X)]

= F [V1(X)− V0(X)]

where ε0 − ε1 ∼ F .
Notice when we model the reponse probability on regressors:

P(y = 1|X) = F (Xβ) ⇐ Xβ = V1(X)− V0(X)

The outcome probabilities depend on the difference in errors, only m− 1
errors (m is the number of alternatives, here m = 2) are free to vary, and
similarly, only m− 1 of the β(1), . . . , β(m) are free to vary.
Therefore the model identification requires a scale normalization on
V ar(ε0 − ε1), or on V ar(ε0) and V ar(ε1) separately.
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Binary Outcome Models Latent Variable Interpretation

Models for the Response Probability

Linear Probability Model: where F (Xβ) = Xβ, has the advantage that
it’s simple to interpret. But it has two problems:

(1) some of the OLS fitted values ŷ could be outside the unit interval – larger
than 1 or smaller than 0;
(2) heteroskedasticity is present unless all of the slope coeffcients β are zero
(recall Bernoulli distribution), and we can’t apply WLS to fix this if (1) is true.

Overall, LPM is a poor choice for modelling probabilities.
Index Models restrict the way in which the response probability depends on
X.

Probit Probability Model: where F (Xβ) = Φ(Xβ), Φ is the standard normal
CDF.
Logit Probability Model: where F (Xβ) = Λ(Xβ), Λ is the logistic CDF.

The logistic and normal distribution (appropriately scaled) have similar
shapes so Logit and Probit typically produce similar estimates for the
response probabilities and marginal effects. One advantage of Logit: its
distribution function is available in closed form which speeds computation.
For binary models other than the LPM, estimation is done by ML. The MLE
is obtained by iterative methods and is asymptotically normally distributed.
Consistent estimates are obtained if F (·) is correctly specified.
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Binary Outcome Models Interpreting estimates

Partial effects

Partial effects
Continuous regressor:

∂p

∂Xj
=

∂F (Xβ)

∂Xj
= f(Xβ) · βj , where f(Xβ)︸ ︷︷ ︸

F ′(·)>0

=
∂F (u)

∂u

∣∣∣∣
Xβ

The effect of one regressor on the response probability depends on the values
of all other regressors.

And the relative effects doesn’t depend on X:
∂F (Xβ)

∂Xj
∂F (Xβ)

∂Xh

=
βj

βh
.

Discrete regressor: the partial effect from Xj changing one unit is

∆p =F [β0 + β1X1 + · · ·+ βj−1Xj−1 + βj(Xj + 1) + βj+1Xj+1 + · · ·+ βKXK ]

−F [β0 + β1X1 + · · ·+ βj−1Xj−1 + βjXj + βj+1Xj+1 + · · ·+ βKXK ]

The estimated β̂MLE is not comparable across different specifications of F (·).
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Binary Outcome Models Interpreting estimates

Binary Logit

. logit lfp age age2 married educ black nchild citiz
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Binary Outcome Models Interpreting estimates

Odds Ratio

For ordered categorical regressors, many researchers prefer odds ratio from
Logit. In this way, βj can be interpreted as semi-elasticity.

Recall in Logit we have P (y = 1|x) = F (xβ) = exβ

1+exβ .

odds ratio/relative risk: p
1−p =

exβ

1+exβ

1

1+exβ
= exβ .

Consider x1 (e.g. income quantile) increases for one unit, δ = (0, 1, 0, . . . , 0),
it follows that

odds[(x+ δ)β]

odds(xβ)
=

eβ0+(x1+1)β1+x2β2+x3β3+···

eβ0+x1β1+x2β2+x3β3+··· = eβ1

The interpretation on odds ratio is meaningless when x1 is unordered, and is
questionable if x1 is not coded with consecutive numbers. Then you could
run logit y i.x, or in Stata to deliver the odds ratio for each category of
x1 and interprete on them.
For Probit model, we can’t have this interpretation on β̂MLE .
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Binary Outcome Models Interpreting estimates

Odds Ratio

. logit lfp age age2 married educ black nchild citiz, or
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Binary Outcome Models Interpreting estimates

Odds Ratio

Consider binary variable married.

odds ratiomarried =
oddsmarried

oddsnot married
=

p

1− p
≈ 0.76

coefficient bmarried = ln oddsmarried − ln oddsnot married

= ln
oddsmarried

oddsnot married
= ln

p

1− p
≈ −0.27

odds ratio = exp(coefficient)

e−0.27 ≈ 0.76 implies that the odds of participating versus not participating
for the married is 0.76 times that of non-married (relative probability
decreases), that is to say, the married are less likely to participate.
For continuous variables, where the odds ratios could be very confusing, we
better choose to interpret marginal effects.
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Binary Outcome Models Interpreting estimates

Marginal effects

Marginal effects are measured in the probability scale which is often the scale
of interest.
In a nonlinear model (e.g. Logit and Probit), marginal effects are more
informative than coefficients.
Three variants of Marginal effects:

Marginal effects at the mean (MEM)
Marginal effects at a representative value (MER)
Average marginal effects (AME)

Model Probability p = P (y = 1|x) Marginal effect ∂p
∂xj

LPM F (xβ) = xβ βj

Logit Λ(xβ) = exβ

1+exβ Λ(xβ)(1− Λ(xβ))βj

Probit Φ(xβ) =
∫ xβ

−∞ ϕ(z)dz ϕ(xβ)βj
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Binary Outcome Models Interpreting estimates

Marginal effect at the mean (MEM)

Marginal effect at the mean: covariates are fixed at their means. Marginal
effects are interpreted in terms of expected probabilities of a person with
average characteristics.
. margins, dydx(*) atmeans
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Binary Outcome Models Interpreting estimates

Marginal effect at a representative value (MER)

Marginal effect at a representative value: covariates are fixed at a vector
chosen by the economist.
A chosen benchmark: a 20-year-old married black female citizen with two
children ...
. margins, dydx(*) at(age=20 age2=400 married=1 educ=4
black=1 nchild=2 citiz=1)
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Binary Outcome Models Interpreting estimates

Average Marginal Effect (AME)

Average marginal effect: AME = ∂F (Xβ)
X = βE[f(Xβ)], the average of

marginal effects for each individual.
. margins, dydx(*)
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Binary Outcome Models Interpreting estimates

Marginal Effects

When we calculate at-means marginal effects, for categorical variables, they
are set to their sample averages, which are not meaningful (e.g., avg(educ)
= 84). Instead, we can either create a benchmark value or calculate the
marginal effect at each of the categories.
Example: Margins by education. After simplifying the education categories
(educ_1), we plot the margins:
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Binary Outcome Models Interpreting estimates

Iteration Log

The iteration log shows fast convergence in four iterations. In practice, a
large number of iterations may signal a high degree of multicollinearity
(which may lead to a ridge instead of a peak).
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Binary Outcome Models Interpreting estimates

Comparison of Estimates

Logit and Probit models have similar shapes for central values of F (·) but
differ in the tails.
According to Amemiya (1981), coefficients can be compare across models
using the rough conversion factors

β̂Logit ≈ 4β̂OLS

β̂Probit ≈ 2.5β̂OLS

β̂Logit ≈ 1.6β̂Probit

This can be derived from the marginal effects across models.
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Binary Outcome Models Interpreting estimates

Comparison of Estimates

The estimates from the models tell a consistent story about the impact of a
regressor on P(lfp = 1).
In binary outcome models, by adopting the Logit or Probit model, the
distribution of the error term and the independence of observations over i are
assumed. Since the variance of a binary variable is always p(1− p), if the
model is correctly specified, there is no need to use the vce(robust) option
in Stata or the sandwich package in R.
The only need for robust variance is when there is clustering.
But if the model is mis-specified (on F (·) or on Xβ), the estimates are not
even consistent, and the quasi-ML theory applies.
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Multinomial Models Introduction

Additive random utitlity model
Conditional Logit

Let’s consider the useful additive random utitlity model we have seen before,
now we have J > 2:

Uj = Xβj + Zjγ + εj , j ∈ {1, . . . , J}

The response probability:

pj(x, z) ≡ P(y = j|X = x, Z = z)

= P(Uj ≥ Uk) ,∀k ̸= j

= P(εk − εj ≤ x(βj − βk) + (zj − zk)γ) ,∀k ̸= j

Under the assumption that {ε1, . . . , εJ} are jointly Type-I Extreme Value
distributed, it follows that pj = exβj+zjγ∑J

l=1 exβl+zlγ
.

Only J − 1 errors of {ε1, . . . , εJ} are free to vary, and similarly, only J − 1 of
{β1, . . . , βJ} are free to vary, while γ is identified. We have J − 1 differences
to solve for J parameters, one of the errors need to be normalized.
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Multinomial Models Introduction

Multinomial Models

Multinomial Logit (MNL)
Response utility: pj(x) =

e
xβj∑J

l=1
exβl

; latent utility: Uj = Xβj + εj .

Regressors (e.g., age and income) are alternative-invariant: xj = x for all
j = 1, ..., J , which means, regressors are specific to the individual but not the
alternative (they do not have a j subscript)

Conditional Logit (CL)
Response utility: pj(x) =

e
zjγ∑J

l=1
e
zjγ ; latent utility: Uj = Zjγ + εj .

Regressors vary across alternatives (e.g. price or time cost of each alternative).
These alternative-specific regressors only affect an individual’s utility if that
specific alternative is selected, so they have a j subscript (the regressor varies
across j while the coefficient γ are common).

The MNL model can be reexpressed as a CL model 1.
Therefore, generally, a conditional Logit: 2

Response utility: pj(x) =
e
xβj+zjγ∑J

l=1
e
xβj+zjγ

; latent utility: Uj = Xβj + Zjγ + εj .
1Check Ch15.2.3 and Ch15.3.4 of the Cameron & Trivedi (2005) Book for how
2Some may call this a mixed logit, but this name may cause confusion since the name mixed

logit is used by many researchers (Bruch Hansen, for example) to refer to the random parameters
logit, so I will avoid this name and still call it a conditional logit.
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Multinomial Models Multinomial Logit

Multinomial Logit

P(sector = j) = exβj∑J
l=1 exβl

Coefficient interpretation:
Coefficients in a multinomial model can be interpreted in the same way as
binary logit model parameters are interpreted, with comparison being to the
base category.
β̂j can be viewed as parameters of a binary logit model between alternative j
and the base alternative (the omitted category).
A positve coefficient from mlogit means that as the regressor increases, we
are more likely to choose alternative j than the base.
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Multinomial Models Multinomial Logit

Relative-risk ratio

Relative-risk ratio (odds ratio as in the binary case):
The relative risk ratio of choosing alternative j rather than alternative 0 is
given by

sectori = j

sectori = 0
= exiβj

where eβj gives the proportionate change in the relative risk of choosing j
over 0 when xi changes by one unit.
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Multinomial Models Multinomial Logit

Relative-risk ratio

A one-year increase in age leads to relative odds of choosing to be
self-employed (dependent variable, sector=1) rather than not participating
(sector=0) that are 1.437 times what they were before the change
(one-year younger).
The original coefficient of age for the alternative self-employed is 0.363, and
we have e0.363 ≈ 1.437.
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Multinomial Models Multinomial Logit

Multinomial Logit

For an unordered multinomial model, there is no single conditional mean of
the dependent variable. Instead, insterest lies in how the probabilities of
alternatives change as regressors change.

For the multinomial model (pj(x) = exβj∑J
l=1 exβl

), the marginal effects can be
shown to be

∂pij
∂xi

= pij(βj − β̄i)

where β̄i =
∑

k pikβk is a probability weighted average of βi.
The signs of the regression coefficients do not give the signs of the
marginal effects.
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Multinomial Models Multinomial Logit

Multinomial Logit

For example, table below gives part of the marginal effects on P(sector = 2)
of a change in the regressors evaluated at the sample mean of them.

Being married decreases by 0.797 the probability of being in a private sector
(2) rather than not participating (0) or being self-employed (1). But if we
check the regression output, the parameter estimate for married is positve
(0.7102, not inlucded in this slides).
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Multinomial Models Conditional Logit

Conditional Logit
Data

TA2_2.dta (Herriges and Kling, 1999):
Individuals choose between fishing using one of four possible modes: (1) from
the beach, (2) the pier, (3) a private boat, or (4) a charter boat;
Case-specific regressor: income;
Alternative-specific regressor: price p and catch rate c.
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Multinomial Models Conditional Logit

Conditional Logit
Reshaping data

In our original wide data, each obervation refers to one individual.

The parameters of conditional logit are estimated with commands that
require the data to be in long form, with one observation providing the data
for just one alternative for an individual.
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Multinomial Models Conditional Logit

Reshaping data

After reshaping, there are now four observations for each individual. One is
chosen for that individual (d = 1), the other three alternatives are not chosen
but we still have the price and catch rate information of them.
Price (p) and catch rate (c) are the two alternative-specific variables, they
have different values for different alternatives.
All case-specific variables appear as a single variable that takes on the same
value for the four outcomes. We only have one case-specific variable here:
income.
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Multinomial Models Conditional Logit

Coefficient interpretation

Alternative-specific regressors: The negative coefficient of -0.023 for p means
that if the price of one mode of fishing increases, then the demand (total
number of choices or probability of choosing) for that mode decreases and
demand for all other modes increases, as expected.
Case-specific regressor : The three income coefficients mean that, relative to
the probability of beach fishing (base category), an increase in income has
nearly no effect on the probability of choosing other three alternatives.
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Multinomial Models Conditional Logit

Marginal effects

For each regressor (here we take p for example), 16 marginal effects are
reported (response probabilities for four modes × p for four modes).
All own effects are negative and all cross effects are positive (we have just
explained the reason: demand).
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Multinomial Models Conditional Logit

Marginal effects

The first effect value given in the output is - 0.001125, a one dollar increase
in the price of beach fishing decreases the probability of beach fishing by
0.001125, with price and income set to sample means.
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Multinomial Models Conditional Logit

Nested Logit
Independence of Irrelevant Alternatives (IIA)

The IIA condition means that the ratio of the probability of selecting train to
that of selecting car is unaffected by the price of an airplane ticket.
This may make sense if individuals view the set of choices as similarly
substitutable, but does not make sense if train and air are close substitutes.
The multinomial logit (MNL) and conditional logit (CL) models have the IIA
property, they impose the restriction that the choice between any two pairs of
alternatives is simply a binary logit model (errors εij in their random utility
models are i.i.d).
Try to think about: is the odds ratio still informative if IIA is violated?
Nested logit (NL) is one of the most tractable models that allow for
correlated errors.
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Multinomial Models Conditional Logit

Tree structure

The NL model requires a nesting structure that splits the alternatives into
groups, where errors are correlated within group but uncorrelated across
group.
In our fishing example, we specify a two-level NL model, assume a
fundamental distinction between shore and boat fishing:

Mode
/ \

Shore boat (level 1)
/ \ / \

Beach Pier Charter Pivate (level 2)
level 1 (a limb): shore/boat contrast; level 2 (a branch): the next level.
NL model permits correlation of errors within each of the level 2 groupings,
whereas the two pairs (εi,beach, εi,pier) and (εi,private, εi,charter) are
independent.
The CL model is a special case of NL, while the MNL is a special case of CL.
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Multinomial Models Conditional Logit

Tree structure

Tree stucture in Stata:

Predicted probabilities:

The average predicted probabilities for NL are quite close to the sample
probabilities.
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Multinomial Models Conditional Logit

Marginal effects

Marginal effects of p on P(fishmode == beach):

Figure 1: ME from NL

Figure 2: ME from CL

Compared to CL, the probability of pier fishing decreases in addition to the
probability of beach fishing (due to the correlated errors within a limb).
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Multinomial Models Conditional Logit

Comparison of Multinomial models

For the information criteria, low values are preferred (recall from last
semester). MNL is least preferred and NL is most preferred..
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Multinomial Models

Commands

Model Stata Commands R packages Python packages3

Multinomial logit mlogit mlogit, nnet statsmodels, scikit-learn
Conditional logit clogit, asclogit, cmclogit survival statsmodels
Nested logit nlogit mlogit PyNLogit
Mixed logit mixlogit, asclogit mlogit larch, pylogit
Multinomial probit mprobit, asmprobit mlogit statsmodels
Ordered outcome models ologit, oprobit MASS, erer, oglmx statsmodels
Marginal effects Margins, mfx margins, mfx statsmodels, margins

3These are as far as I know and may not be the best options, please check before using.. You
can always call Stata from R (RStata, or Statamarkdown if R Markdown), Python (PyStata,
works with IPyhon or Python shell).
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Appendix Binary Outcome Models

MLE
Back to Predicted Probabilities

LN =
∑
i

{yi lnF (Xβ) + (1− yi) ln[1− F (Xβ)]}

FOC wrt β :
∂LN

∂β
=

∑
i

ß
yi

f(Xβ)

F (Xβ)
Xi + (1− yi)

−f(Xβ)

1− F (Xβ)
Xi

™
=

∑
i

ß
yif(Xβ)[1− F (Xβ)]− (1− yi)f(Xβ)F (Xβ)

F (Xβ)[1− F (Xβ)]
Xi

™
=

∑
i

ß
[yi − F (Xβ)]f(Xβ)

F (Xβ)[1− F (Xβ)]
Xi

™
=

f(Xβ)

F (Xβ)[1− F (Xβ)]

∑
i

{[yi − F (Xβ)]Xi}

= 0

⇒
∑
i

{[yi − F (Xβ)]Xi} = 0
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Appendix Binary Outcome Models

Goodness of Fit

Goodness of Fit is interpreted as closeness of fitted values to sample values
of the dependent variable.
Measures of Goodness of fit:

1 Predicted outcomes
2 Predicted frequencies
3 Pseudo-R2
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Appendix Binary Outcome Models

Goodness of Fit
Predicted Outcomes

Classification:
If we want to predict the outcome variable (y = 0, 1) and assume a
symmetric loss function, it’s natural to set

ỹ = 1 if F (xβ) ≥ 0.5,

ỹ = 0 if F (xβ) < 0.5

One measure of goodness of fit is the percentage of correctly classified
obervations. Four possible cases:

1 (y, ỹ) = (0, 0)
2 (y, ỹ) = (1, 1)
3 (y, ỹ) = (1, 0)
4 (y, ỹ) = (0, 1)

Problem: If we have 100 observations, 70 of them are zeros, and we predict
all of them are zero. We still correctly predict 70% of all outcomes even if
none of the y = 1 values are correctly predicted.
Solution: Set the overall percent correctly predicted as the weighted average
of the percent correctly predicted for y = 0 and y = 1.
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Appendix Binary Outcome Models

Goodness of Fit
Predicted Outcomes

Threshold:
1 The 0.5 threshold

Some have criticized the prediction rule for always using a threshold value of
0.5, especially when one of the outcomes is unlikely.

2 One alternative is to use the fraction of successes in the sample (ȳ) as the
threshold.

If ȳ < 0.5 (> 0.5), using this rule will certainly increase the number of
predicted successes (failures), but not without cost: we necessarily make more
mistakes in predicting the failures (successes).
In terms of the overall percent correctly predicted, we may actually do worse
than when using the traditional 0.5 threshold.

3 A third possibility is to choose the threshold such that the fraction of above
threshold values ỹi = 1 in the sample is the same (or very close) to ȳ:

α = argmin
α

{∑
i

1 (F (X ′
iβ) ≥ α)−

∑
i

yi

}
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Appendix Binary Outcome Models

Goodness of Fit
Predicted Probabilities

Problem: average predicted probabilities 1
N

∑
i p̂i ≡ sample frequency ȳ.

ML FOC

Solution: use subsamples (e.g., cohort, income decile).
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Appendix Binary Outcome Models

Goodness of Fit
Pseudo-R2

A pseudo-R2 is an extension of R2 to nonlinear regression model.
Pseudo-R2 measure proposed by McFadden (1974):

R̃2 =
lnLN (β̂)− lnLN (ȳ)

ln 1− lnLN (ȳ)
=

lnLN (β̂)− lnLN (ȳ)

0− LN (ȳ)
= 1− LN (β̂)

LN (ȳ)

= 1−
∑

i

¶
yi lnF (X ′

iβ̂) + (1− yi) ln[1− F (X ′
iβ̂)]
©

N [ȳ ln ȳ + (1− ȳ) ln(1− ȳ)]

where ln 1 is the maximum value in the support of a log-likelihood LN (β);
ln 1− LN (ȳ) is the maximum possible improvement from the likelihood of a
intercept-only model (only includes the constant term as regressor, ȳ
estimated); and lnLN (β̂)− lnLN (ȳ) is the improvement in likelihood
achieved by the estimated β̂ from the intercept-only model.
R̃2 is the proportion of the actual increase in the likelihood to the maximum
possible increase of the likelihood, it increases as more regressors are added.
Because the log likelihood for a binary response model is always negative
(p ∈ (0, 1) ⇒ ln p < 0), 0 > LN (β̂) ≥ LN (ȳ), and so the pseudo-R2 is
always between zero and one.
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Appendix Binary Outcome Models

Model Specification tests

Examples
Wald Test: add regressors (XK+1, · · · , XK+l) to the regression, test
H0 : (βK+1, · · · , βK+l) = 0.
Likelihood-ratio test: add regressors (XK+1, · · · , XK+l) to the regression,
test H0 ⇔ lnL = lnL+l.

Lagrange multiplier test: add regressor (Xβ̂)2 to the regression, test on its
coefficient H0 : βK+1 = 0.

If the null is rejected, it means that the departure from Xβ in the direction of
an asymmetric form provides us a better model.
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Appendix Multinomial Outcome Models

Multinomial Logit

Model fit interpretation:
For multinomial models, Stata reports the pseudo-R2 we’ve seen in the
binary model: R̃2 = 1− lnLfit

lnL0
, where lnL0 is the log likelihood of an

intercept-only model, and lnLfit is the likelihood of the fitted model. And
again, for discrete dependent variables, R̃2 has desirable properties including
that it increases as regressors are added for models fitted by ML.
The model fit is quite poor with pseudo-R2 equal to 0.0812.
The LR chi-squred is super large (20095.69), hence the regressors are jointly
statistically significant at the 0.05 level.
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