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Binary Outcome Models



Binary Outcome Models [RETIEY: )

Introduction

o Data (TA2_1.dta): US individual data on labor force participation from the
Current Population Survey (CPS). 2010 cross-section, 16-64 years-old women.

@ Research question: We are going to study the determinants of the decision
to participate in the labor market for women. This choice is recorded by
dummy 1fp (denoted by y).

_ {1 with probability p
Y=10 with probability 1 — p

o Limited dependent variable: y has support {0, 1}, and this restriction has
consequences for econometric modeling.

@ In regression analysis, we want to measure how response probability p varies
across individuals as a function of regressors X: P(y = 1|X) = p(X).

@ A traditional approach is parametric modelling with MLE. Two parametric
forms for p(X): logit and probit.
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Random Utility Formulation

@ A decision-maker chooses between alternatives 0 and 1 according to which
has the higher utility. Outcome variable y indicates which alternative is
chosen.

@ The additive random utility model (ARUM) specifies the utilities of
alternatives:
U() = %(X) +¢eo
U1 = Vl(X) + &1

@ where V's are deterministic components of utility (deterministic function of
data) and es are random components of utility.

o It follows that

_% if Uy > Uy
Y= 10 otherwise
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Random Utility Formulation

P(y =1|X) =P(U1 = U)
=PWVi(X)+e1 > Vo(X) + &0
=Pleg —e1 < VI(X) — Vo(X)]
=F[Vi(X) — Vo(X)]

where g —e1 ~ F.

@ Notice when we model the reponse probability on regressors:
P(y = 11X) = F(XB) < X8 = Vi(X) - Vo(X)

@ The outcome probabilities depend on the difference in errors, only m — 1
errors (m is the number of alternatives, here m = 2) are free to vary, and
similarly, only m — 1 of the SV, . .., 3(™) are free to vary.

@ Therefore the model identification requires a scale normalization on
Var(go — e1), or on Var(eg) and Var(e;) separately.
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Models for the Response Probability

o Linear Probability Model: where F(X3) = X3, has the advantage that
it's simple to interpret. But it has two problems:
(1) some of the OLS fitted values  could be outside the unit interval — larger
than 1 or smaller than 0;
(2) heteroskedasticity is present unless all of the slope coeffcients 3 are zero
(recall Bernoulli distribution), and we can’t apply WLS to fix this if (1) is true.
Overall, LPM is a poor choice for modelling probabilities.
o Index Models restrict the way in which the response probability depends on
X.
o Probit Probability Model: where F/(X3) = ®(Xf), ® is the standard normal
CDF.
o Logit Probability Model: where F(X ) = A(X ), A is the logistic CDF.
The logistic and normal distribution (appropriately scaled) have similar
shapes so Logit and Probit typically produce similar estimates for the
response probabilities and marginal effects. One advantage of Logit: its
distribution function is available in closed form which speeds computation.
@ For binary models other than the LPM, estimation is done by ML. The MLE
is obtained by iterative methods and is asymptotically normally distributed.
Consistent estimates are obtained if F'(-) is correctly specified.
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Partial effects

o Partial effects
o Continuous regressor:

Op _ OF(Xp) _

ax; = TX] = f(XB) - B;, where f(XS)=

OF (u)
ou

F'(:)>0 xp
The effect of one regressor on the response probability depends on the values

of all other regressors.
OF(XB)

And the relative effects doesn't depend on X: % = %
%,

o Discrete regressor: the partial effect from X changing one unit is

Ap=F[fo+ X1+ + i1 X1+ 6;(X; + 1) + B X1 + - + Br Xk
—FBo+B1 X1+ 4 Bj1 X1+ B X; + B X1 + -+ + B X k]

o The estimated S5 is not comparable across different specifications of F(.).
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ZIPTR eI I VS NPl |nterpreting estimates

Binary Logit

. logit 1lfp age age2 married

Logistic regression

educ black nchild citiz

Number of obs = 169,588

LR chi2(7) = 18561.7@

Prob > chi2 = 0.0000

Log likelihood = -94992.85 Pseudo R2 = 0.0890
1fp | Coefficient Std. err. z P>|z| [95% conf. intervall
age .2603412 .0029713 87.62 B.000 .2545176 2661648
age2 -.0032281 .0000368 -87.83 o.oe0 -.0033002 -.0031561
married -.2690702 .0131599 =20.45 0.000 -.2948632 =.2432772
educ .B8181616 .80082605 69.71 0.0080 .817651 .818B6723
black -.153129 .08173409 -B8.83 B.000 -.1871166 -.1191414
nchild -.1586691 0055978 -28.35 o.oe0 -.1696405 -.1476978
citiz 3888647 .0204338 19.03 0.000 .3488153 .4289142
_cons =5.387922 .8539313 =98.42 0.0080 =5.413625 =5.202218
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Odds Ratio

@ For ordered categorical regressors, many researchers prefer odds ratio from
Logit. In this way, 3; can be interpreted as semi-elasticity.

. . zB
o Recall in Logit we have P(y = 1|z) = F(2) = 1755
=B
o odds ratio/relative risk: 2 = 1% = 75,
p 14e2B
o Consider z; (e.g. income quantile) increases for one unit, § = (0,1,0,...,0),

it follows that

odds[(x + 5)ﬁ] _ eBot(z1+1)B1+az2BatasBat- _ o
odds(acﬁ) ePotziBrtaaBatazfa+-

@ The interpretation on odds ratio is meaningless when ;1 is unordered, and is
questionable if z; is not coded with consecutive numbers. Then you could
run logit y i.x, or in Stata to deliver the odds ratio for each category of
21 and interprete on them.

@ For Probit model, we can't have this interpretation on BMLE.
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ZIPTR eI I VS NPl |nterpreting estimates

Odds Ratio

. logit 1lfp age age2 married

Logistic regression

Log likelihood = -94992.85

educ black nchild citiz, or

Number of obs = 169,588

LR chiz(7) = 18561.7@
Prob = chiz2 = 0.0000
Pseudo R2 = 0.0890

1fp Odds ratie Std. err. z P=|z| [95% conf. intervall
age 1.297373 .8038549 87.62 0.000 1.289839 1.30495
age2 .9967771 8080366 =87.83 0.0080 .9967853 .9968489
married 7640896 .081e08554 -20.45 B.000 7446334 .7840542
educ l.018328 0002653 69.71 0.000 l.017808 1.018848
black .B58019 .8148789 -8.83 0.000 .B829347 .BB76823
nchild .8532786 .8047764 =28.35 0.0080 .B439681 .B626918
citiz 1.475385 030146 19.83 B.0e0 1.417387 1.535589
_cons . 0049522 0002671 =98.42 0.000 . 8044555 .0055043

Note: _cons estimates baseline odds.
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Odds Ratio

@ Consider binary variable married.

. odds ;
odds ratioarried = married _ _P_ (.76

Oddsnot married 1- p
coefficient bmarried =1n Oddsmarried —1In Oddsnot married

Oddsmarried p
n =1In
Oddsnot married -p

odds ratio = exp(coefficient)

=1

~ —0.27

€927 ~ 0.76 implies that the odds of participating versus not participating
for the married is 0.76 times that of non-married (relative probability
decreases), that is to say, the married are less likely to participate.

@ For continuous variables, where the odds ratios could be very confusing, we
better choose to interpret marginal effects.
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Marginal effects

o Marginal effects are measured in the probability scale which is often the scale
of interest.

@ In a nonlinear model (e.g. Logit and Probit), marginal effects are more
informative than coefficients.

@ Three variants of Marginal effects:

o Marginal effects at the mean (MEM)
o Marginal effects at a representative value (MER)
o Average marginal effects (AME)

Model Probability p = P(y = 1|x) Marginal effect 8%
LPM F(xzB) = zp B;

Logit  A(ef) = 1225 A(@B)(1 - A2B))B;
Probit d(zf8) = fffo o(2)dz é(xB)p;
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Marginal effect at the mean (MEM)

o Marginal effect at the mean: covariates are fixed at their means. Marginal

effects are interpreted in terms of expected probabilities of a person with

average characteristics.

margins, dydx(*) atmeans

Conditional marginal effects Number of obs 169,588
Model VCE : OIM
Expression : Pr(Lfp), predict()
dy/dx w.r.t. : age age2 married educ black nchild citiz
at 1 age = 39.78121 (mean)
age2 - 1776.929 (mean)
married = .5147652 (mean)
educ = 84.80023 (mean)
black - .1168007 (mean)
nchild = .866783 (mean)
citiz = .9211619 (mean)
Delta-method
dy/dx  Std. Err. z P>|z| [95% Conf. Intervall
age .8531153 .0006006 88.43 0.000 .851938 .0542925
age2 ~.0806586 7.43e-06 ~-88.69 0.000 ~-.0006732 ~.0006441
married ~.0548962 .0026818 -20.47 0.000 ~-.8601524 ~.04964
educ .0037054 .0000527 70.28 0.000 .003602 .0038087
black ~-.0312417 .0035372 -8.83 0.000 =.0381744 -.024309
nchild ~-.832372 .0011398 -28.40 0.000 ~.034606 ~-.8381379
citiz .0793369 .0041705 19.02 0.000 .0711629 .08751e9
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Marginal effect at a representative value (MER)

o Marginal effect at a representative value: covariates are fixed at a vector
chosen by the economist.

@ A chosen benchmark: a 20-year-old married black female citizen with two
children ...
margins, dydx(*) at(age=20 age2=400 married=1 educ=4
black=1 nchild=2 citiz=1)

Conditional marginal effects Number of obs = 169,588
Model VCE  : OIM
Expression  : Pr(lfp), predict()
dy/dx war.t. i age age2 married educ black nchild citiz
at i age = 20

age2 = 400

married = 1

educ = a

black = 1

nehild = 2

citiz = 1

Delta-method

dy/dx  Std. Err. z Pz [95% Conf. Intervall
age 0347012 .0007019  49.44 .0333256  .0360769
age2 8.88e-86 -48.45 -.0004477  -.0004129
married 0015513 -23.12 -.0389052  -.0328242
educ 61.87 0023441 .0024975
black | -.0204108 -9.63 -.0245649  -.0162566
nchild | -.0211492 -26.28 -.0227264  -.019572
citiz 0518323 16.70 0457494 .0579152
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Average Marginal Effect (AME)

o Average marginal effect: AMFE =

marginal effects for each individual.

margins, dydx(*)

OF

X

(XB) _ BE

[f(XB)], the average of

Average marginal effects Number of obs = 169,588
Model VCE : 0IM
Expression : Pr(lfp), predict()
dy/sdx w.r.t. : age age2 married educ black nchild citiz
Delta-method
dy/dx  Std. Err. z P>|z| [95% Conf. Intervall
age .0005149 95.33 0.000 .04ge8e4q .0500989
age2 6.37e-06 -95.58 0.000 6212 .
married ~.05087356 .0024718 -208.53 0.000 ~-.8555802
educ .0034245 .0000468 73.24 0.000 .0033329 0035162
black -.0288738 .0032674 ~8.84 0.000 ~-.0352779 ~.0224698
nchild ~-.0299185 .0018475 ~-28.56 0.000 ~-.8319715 ~.8278655
citiz .8733239 .0038377 19.11 0.000 .0658022 0808456
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ZIPTR eI I VS NPl |nterpreting estimates

Marginal Effects

@ When we calculate at-means marginal effects, for categorical variables, they
are set to their sample averages, which are not meaningful (e.g., avg(educ)
= 84). Instead, we can either create a benchmark value or calculate the
marginal effect at each of the categories.

o Example: Margins by education. After simplifying the education categories
(educ_1), we plot the margins:

Adjusted Predictions of educ_1 with 95% Cls

Pr(Lfp)
7

educ_1
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ZIPTR eI I VS NPl |nterpreting estimates

lteration Log

Iteration @: log likelihood = -1084273.7

Iteration 1: log likelihood = -35138.212

Iteration 2: log likelihood = -949%3.811

Iteration 3: log likelihood = -94992.85

Iteration 4: log likelihood = -94992.85

Logistic regression Number of obs = 169,588
LR chi2(7} = 18561.7@
Prob > chi2 = 0.0000

Log likelihood = -94992.85 Pseudo R2 = 0.0890

@ The iteration log shows fast convergence in four iterations. In practice, a
large number of iterations may signal a high degree of multicollinearity
(which may lead to a ridge instead of a peak).
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ZIPTR eI I VS NPl |nterpreting estimates

Comparison of Estimates

@ Logit and Probit models have similar shapes for central values of F'(-) but
differ in the tails.

@ According to Amemiya (1981), coefficients can be compare across models
using the rough conversion factors

Brogit = 4BoLs
Bprrovit = 2.580Ls

ﬂLogit ~1 '66PT0bit

This can be derived from the marginal effects across models.
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ZIPTR eI I VS NPl |nterpreting estimates

Comparison of Estimates

(1)
Logit

(2)
Logit r

(3)
Probit

(4)
Probit r

(5)
oLs

(6)
oLs r

main
age 0. 24204k
03)

agel =0.00303%xx
(0.0000373)

married =8.27 %%k

{0.0132)

0.2424xk

(0 309)

=0.00303%xx

(0.0000380)

=827 %%k
{0.0131)

0. 1455k
(0.00188)

=0.0018Lxkxx

(0.0000221)

=8 . 165%%x
(0.00778)

0. 1455k
(0.00183)

=0.00181xxx

(0.0000225)

=8 . 165%%x
(0.00774)

0048750k
(@.000576)

=0.000609%xx

(0.00000710)

=0.050T*x%x
(0.00243)

0048750k
(@.000605)

=0.000609%xx

(0.00000746)

=0.050T*x%x
(0.00237)

@ The estimates from the models tell a consistent story about the impact of a

regressor on P(Ifp =1).

@ In binary outcome models, by adopting the Logit or Probit model, the

distribution of the error term and the independence of observations over i are

assumed. Since the variance of a binary variable is always p(1 — p), if the

model is correctly specified, there is no need to use the vce(robust) option

in Stata or the sandwich package in R.

@ The only need for robust variance is when there is clustering.

@ But if the model is mis-specified (on F(-) or on X f3), the estimates are not

even consistent, and the quasi-ML theory applies.
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Multinomial Models



Additive random utitlity model

Conditional Logit

@ Let's consider the useful additive random utitlity model we have seen before,
now we have J > 2:

Uj :Xﬂj+Zj’Y+€j, je€ {1,,J}
@ The response probability:

pi(z,2) =Ply=jlX =2,Z ==z)
=PU; > Ux) ,VE#j
=Plex —&j <x(Bj — Br) + (25 — z1)7) Vb #j

o Under the assumption that {e;,...,e;} are jointly Type-I Extreme Value

N . o eTBj Tz
dlstrlbuted, It fO”OWS that pj = W
@ Only J — 1 errors of {e1,...,e;} are free to vary, and similarly, only J — 1 of

{B1,...,Bs} are free to vary, while ~ is identified. We have J — 1 differences
to solve for J parameters, one of the errors need to be normalized.
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Multinomial Models

e Multinomial Logit (MNL)

e Response utility: p;(z) = ZJ s 7 =5 latent utility: U; = XB; +¢;.

o Regressors (e.g., age and mcome) are alternative-invariant: x; = « for all
j=1,...,J, which means, regressors are specific to the individual but not the
alternative (they do not have a j subscript)

e Conditional Logit (CL)

e Response utility: p;(z) = ﬂ, latent utility: U; = Z;7v + ¢;.

Z I
o Regressors vary across alternatlves (e.g. price or time cost of each alternative).
These alternative-specific regressors only affect an individual's utility if that
specific alternative is selected, so they have a j subscript (the regressor varies

across j while the coefficient v are common).
@ The MNL model can be reexpressed as a CL model .
@ Therefore, generally, a conditional Logit: 2

rﬁj+z7w

o Response utility: p;(z) = W latent utility: U; = X85 + Z;y + ¢;.

1Check Ch15.2.3 and Ch15.3.4 of the Cameron & Trivedi (2005) Book for how
2Some may call this a mixed logit, but this name may cause confusion since the name mixed
logit is used by many researchers (Bruch Hansen, for example) to refer to the random parameters

logit, so | will avoid this name and still call it a conditional logit.
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Multinomial Logit

Multinomial logistic regression Number of obs = 147,843
LR chi2(28) = 20895.69
Prob > chi2

Log likelihood = -113748.54 Pseudo R2

sector | Coefficient Std. err

P>|z| [95% conf. interval

Not_participating (base outcome

self_employed

age .3625662 1511 44.48 .3465904 .3785421
age2 -.004007 8939  -42.69 -.0041909 -.003823
married .1393773  .0279609 4.98  0.000 .8845749 1941797

. =8;
o P(sector = j) = féwﬁz
o Coefficient interpretation:

o Coefficients in a multinomial model can be interpreted in the same way as
binary logit model parameters are interpreted, with comparison being to the
base category.

° Bj can be viewed as parameters of a binary logit model between alternative j
and the base alternative (the omitted category).

o A positve coefficient from mlogit means that as the regressor increases, we

are more likely to choose alternative j than the base.
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(VI GEOCOREI RV EE NP Multinomial Logit

Relative-risk ratio

Relative-risk ratio (odds ratio as in the binary case):
@ The relative risk ratio of choosing alternative j rather than alternative 0 is
given by

sector; = J
sector; = J _ emiﬁj

sector; =0

where e gives the proportionate change in the relative risk of choosing j
over 0 when x; changes by one unit.
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(VI GEOCOREI RV EE NP Multinomial Logit

Relative-risk ratio

sector RRR  Std. Err.

Not_participating (base outcome)

Self_employed
age 1.437012  .0117132

age2 9960011  .0060935

married 1.149558  .0321427

@ A one-year increase in age leads to relative odds of choosing to be
self-employed (dependent variable, sector=1) rather than not participating
(sector=0) that are 1.437 times what they were before the change
(one-year younger).

@ The original coefficient of age for the alternative self-employed is 0.363, and
we have 0363 ~ 1.437.

22/36



Multinomial Logit

@ For an unordered multinomial model, there is no single conditional mean of
the dependent variable. Instead, insterest lies in how the probabilities of
alternatives change as regressors change.

ey

@ For the multinomial model (p;(z) = Z] 7 =5 ), the marginal effects can be

shown to be

Op;
a};j —pu(ﬁ ﬁz)

where 3; = 3", pirB is a probability weighted average of j3;.

o The signs of the regression coefficients do not give the signs of the
marginal effects.
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Multinomial Logit

o For example, table below gives part of the marginal effects on P(sector = 2)
of a change in the regressors evaluated at the sample mean of them.

Average marginal effects Number of obs = 147,843
Model VCE  : OIM
Expression @ Pr(sector==Private_sector_employee), predict(outcome(2))
dy/dx w.r.t. : age age2 married 1.educ_l 2.educ_1 3.educ_1 4.educ_1 black nchild citiz
Delta-method
dy/dx  std. Err. z  Prlz| [95% Conf. Interval
age .0399803  .0006508  61.43  0.000 .0387047  .0412559
agez | -.0005343 7.89e-06 -67.72 ©0.00@0  -.0005497  -.@005188
married | -.0796828  .002815 -28.31 ©0.00@  -.0852001  -.@741656

@ Being married decreases by 0.797 the probability of being in a private sector
(2) rather than not participating (0) or being self-employed (1). But if we
check the regression output, the parameter estimate for married is positve
(0.7102, not inlucded in this slides).
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Conditional Logit

Data

TA2_2.dta (Herriges and Kling, 1999):

o Individuals choose between fishing using one of four possible modes: (1) from
the beach, (2) the pier, (3) a private boat, or (4) a charter boat;

o Case-specific regressor: income;

o Alternative-specific regressor: price p and catch rate c.
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Conditional Logit

Reshaping data

| Models

Conditional Logit

@ In our original wide data, each obervation refers to

one individual.

mode pbeach
157.93
15.114
161.874
15.134
106.93
192.474
51.934
15.134
34.014
28.314
34.014

@ The parameters of conditional logit are estimated with commands that

ppier
157.93
15.114
161.874
15.134
106.93
192.474
51,934
15.134
34.914
28.314
34.914

pboat.
157.93
10.534
24.334
55.93
a1.514
28.934
191.93
21.714
34.014
28.314
24.334

pcharter
182.93
34.534
59.334
84,93
71.014
63.934
220,93
56.714
53.414
46.814
48.334

cbeach
0678
.1043
.5333

cpier
L0503
.0451
L4522

echarter

.5301
L4671
.0266
.5391

.32

L3975

income dbeach
7083.3317
1249.9998
3749.9999
2083.3332
4583.332
4583.332
8750.001
2083.3332
3749.9999
2916.6666
3749.9999

srresesrere s

dcharter

sesreore e s R P

require the data to be in long form, with one observation providing the data

for just one alternative for an individual.
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(VI EOENNEI NV EE NPl Conditional Logit

Reshaping data

o After reshaping, there are now four observations for each individual. One is
chosen for that individual (d = 1), the other three alternatives are not chosen

but we still have the price and catch rate information of them.

@ Price (p) and catch rate (c) are the two alternative-specific variables, they
have different values for different alternatives.

o All case-specific variables appear as a single variable that takes on the same

value for the four outcomes. We only have one case-specific variable here:

income.

id

WW W W N NNN R R R

fishmode
beach
boat
charter
pier
beach
boat
charter
pier
beach
boat
charter
pier

p
157.93
157.93
182.93
157.93
15.114
10.534
34.534
15.114

161.874
24.334
59.334

161.874

.0678
+2601
.5391
.0503
+1049
.1574
-4671
+0451
.5333
.2413
. 0266
.4522

income

76083.
7083,
7883.
76083.
1249,
1249.
1249.
1249.
3749.
3749.
3749.
3749.

3317
3317
3317
3317
9998
9998
9998
9998
9999
9999
9999
9999

Seor oo r S ss RS S
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(VI EOENNEI NV EE NPl Conditional Logit

Coefficient interpretation

d Coefficient Std. err. z P>|z| [95% conf. intervall
fishmode
P ~.8228473 .8018051 -12.66 0.800 -.8263853 -.8193093
c .2801154 .1352867 2.07 0.838 .8149583 .5452725
beach (base alternative)
boat
income .0000766 .0000521 1.47 0.142 =.0000256 .0001787
_cons .5084965 .2421028 2.18 0.836 .8339837 .9830093
charter
income -.0000471 .0000523 -0.90 0.368 -.0001496 .0000554
_cons 1.71245 .2400162 7.13 0.800 1.242027 2.182873
pier
income =.0001183 .0000536 =2.21 0.027 =.0002234 =.0000133
_cons .7648191 .2455243 3.12 0.002 .2836003 1.246038

o Alternative-specific regressors: The negative coefficient of -0.023 for p means
that if the price of one mode of fishing increases, then the demand (total
number of choices or probability of choosing) for that mode decreases and
demand for all other modes increases, as expected.

o Case-specific regressor: The three income coefficients mean that, relative to
the probability of beach fishing (base category), an increase in income has
nearly no effect on the probability of choosing other three alternatives.
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(VI EOENNEI NV EE NPl Conditional Logit

Marginal effects

Pr(choice = beach|1 selected) = .05193131 Prichoice = charter|1 selected) = .46919337

variable dp/dx  Std. err.  z  P>lz| [ 9% I ] X veriable dp/dx  Std.err. z  Prlz| [ 9% C.I. ] x
p [
beach -.001354 -.000896  108.02 beach 108.02
boat 52.559 boat 52.559
charter 81.779 charter E 81.779
pier s.16 0.000 .000043 000109  108.02 pier | .000713  .00007 10.15 0.000 .000576 .000851  108.02

Prichoice = boat|1 selected) = .41233345 Prichoice = pier|1 selected) = .06653588

variable dp/dx  Std. err.  z  P>lz| [ 9% I ] X veriable dp/dx  Std.err. z  Prlz| [ 9% C.I. ] x
p [
beach | 000489 .000385  .000594  108.02 beach -000103  108.02
boat | -.005536 -.00644 -.004632  52.559 boat -e0e75  52.559
charter | .00442 .003506 005334  81.779 charter -ooess1 81779
pier | .000627 .000063 10.81 0.000 .000504  .00075  108.02 pier | -.001419 .000133 -10.66 0.000 -.00168 -.001158  108.02

@ For each regressor (here we take p for example), 16 marginal effects are
reported (response probabilities for four modes x p for four modes).

o All own effects are negative and all cross effects are positive (we have just
explained the reason: demand).
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Marginal effects

Prichoice = beach|l selected) = .85193131

variable dp/dx  Std. err. z P>lz| [ 95% C.I. 1 X
p
beach -.881125 .000117 =9.62 0.00@0 -.001354 -.000BY96 le8.02
boat .e00489 .0000853 95.17 B.o00 . 000385 .000594 52.559
charter .8008557 .bo0e6 9.28 B.o00 . 000439 . 000674 81.77%
plier .eoee79 .000015 5.16 B.o00 . 000049 .go0l109 les.02

@ The first effect value given in the output is - 0.001125, a one dollar increase
in the price of beach fishing decreases the probability of beach fishing by
0.001125, with price and income set to sample means.

30/36



Nested Logit

Independence of Irrelevant Alternatives (IIA)

@ The IlA condition means that the ratio of the probability of selecting train to
that of selecting car is unaffected by the price of an airplane ticket.

@ This may make sense if individuals view the set of choices as similarly
substitutable, but does not make sense if train and air are close substitutes.

@ The multinomial logit (MNL) and conditional logit (CL) models have the IIA
property, they impose the restriction that the choice between any two pairs of

alternatives is simply a binary logit model (errors ¢;; in their random utility
models are i.i.d).

@ Try to think about: is the odds ratio still informative if lIA is violated?

o Nested logit (NL) is one of the most tractable models that allow for
correlated errors.
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(VI EOENNEI NV EE NPl Conditional Logit

Tree structure

@ The NL model requires a nesting structure that splits the alternatives into
groups, where errors are correlated within group but uncorrelated across

group.
@ In our fishing example, we specify a two-level NL model, assume a
fundamental distinction between shore and boat fishing:

Mode
/ \

Shore boat (level 1)
/ \/ \
Beach  Pier Charter Pivate (level 2)
o level 1 (a limb): shore/boat contrast; level 2 (a branch): the next level.

@ NL model permits correlation of errors within each of the level 2 groupings,
whereas the two Pai"s <5i7beach75i7pier) and (Ei,privateygi,charter) are
independent.

@ The CL model is a special case of NL, while the MNL is a special case of CL.
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(VI EOENNEI NV EE NPl Conditional Logit

Tree structure

@ Tree stucture in Stata:

tree structure specified for the nested logit model

type N

fishmode N k

coast 2000 —[ beach leee 17

pier leee 143
water 2000 —[ boat leee 355
charter 1eee 395

k = number of
N = number of

o Predicted probabilities:

total 4000 leee

times alternative is chosen
observations at each level

Summary of Pr{fishmode

alternatives)
fishmode Mean Std. Dev. Freqg.
beach .12074824 .14489275 1,000
boat .3469483 .14423437 1,000
charter .40304971 .16979586 1,000
pier .12925375 .15864406 1,000
Total .25 .19990564 4,000

@ The average predicted probabilities for NL are quite close to the sample

probabilities.
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(VI EOENNEI NV EE NPl Conditional Logit

Marginal effects

o Marginal effects of p on P(fishmode == beach):

Summary of dpdbeach
fishmode Mean  Std. Dev. Freq
beach | -.00089689  .00088494
boat
charter
pier
Total | -2.747e-09  .008122443 4,000

Figure 1: ME from NL

Prichoice = beach|1 selected) = .85193131

variable dp/dx Std. err. z P>lz|] [ 95% C.I. 1 X
P
beach -.001125 .800117 -9.62 8.000 -.001354 -.000896 108.82
boat .000489 .0000853 9.17 e.000 .000385 .000594 52.559
charter .800557 .800086 9.28 e.000 .000439 .800674 81.779
pier .e00079 .0000815 5.16 e.000 .000049 .000109 1e8.02

Figure 2: ME from CL

@ Compared to CL, the probability of pier fishing decreases in addition to the

probability of beach fishing (due to the correlated errors within a limb).
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(VI EOENNEI NV EE NPl Conditional Logit

Comparison of Multinomial models

Variable MNL CL NL
P -0.025 -0.027
q 0.358 1.347
N 1182 4728 4728
11 -1477 -1215 -1192
aic 2966 2446 2405
bic 2997 2498 2469

o For the information criteria, low values are preferred (recall from last
semester). MNL is least preferred and NL is most preferred..
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Commands

Multinomial Models

Model

Stata Commands

R packages

Python packages®

Multinomial logit
Conditional logit

Nested logit

Mixed logit

Multinomial probit
Ordered outcome models
Marginal effects

mlogit

clogit, asclogit, cmclogit
nlogit

mixlogit, asclogit
mprobit, asmprobit

ologit, oprobit

Margins, mfx

mlogit, nnet
survival

mlogit

mlogit

mlogit

MASS, erer, oglmx
margins, mfx

statsmodels, scikit-learn
statsmodels

PyNLogit

larch, pylogit
statsmodels

statsmodels

statsmodels, margins

3These are as far as | know and may not be the best options, please check before using.. You

can always call Stata from R (RStata, or Statamarkdown if R Markdown), Python (PyStata,
works with IPyhon or Python shell).
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Ly = Z {yinF(XB) + (1 —y;) In[l — F(XB)]}

oL XB —f(XB)
FOC wrt G : aBN:Z:{y f((XB))X —|—(1—yi) ((Xﬁ)Xi}

zfXB 1-F 1- zfXﬂ)F(XB)
:Z{ (XB)I (XB)] = (1 —wi) f(

)
1. F(XA)[1— F(Xp)]
)
]

lyi — F(XB)]f(XB
2 {F(XB)[ F(XB) X

2

$Z{ F(XB)]X;} =0

o)
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Goodness of Fit

@ Goodness of Fit is interpreted as closeness of fitted values to sample values
of the dependent variable.
@ Measures of Goodness of fit:

© Predicted outcomes
@ Predicted frequencies
© Pseudo-R?
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Goodness of Fit

Predicted Outcomes

Classification:
o If we want to predict the outcome variable (y = 0,1) and assume a
symmetric loss function, it’s natural to set
j=1if F(zB) > 0.5,
j=0if F(zB) < 0.5

@ One measure of goodness of fit is the percentage of correctly classified
obervations. Four possible cases:

Q (v,9)=(0,0)
(2] (y,g}) = (17 1)
Q (v,9)=(1,0)
Q (y,,ﬂ) = (07 1)

@ Problem: If we have 100 observations, 70 of them are zeros, and we predict
all of them are zero. We still correctly predict 70% of all outcomes even if
none of the y = 1 values are correctly predicted.

@ Solution: Set the overall percent correctly predicted as the weighted average
of the percent correctly predicted for y =0 and y = 1.
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Goodness of Fit

Predicted Outcomes

Threshold:
© The 0.5 threshold
e Some have criticized the prediction rule for always using a threshold value of
0.5, especially when one of the outcomes is unlikely.

@ One alternative is to use the fraction of successes in the sample () as the
threshold.

o If § < 0.5 (> 0.5), using this rule will certainly increase the number of
predicted successes (failures), but not without cost: we necessarily make more
mistakes in predicting the failures (successes).

o In terms of the overall percent correctly predicted, we may actually do worse
than when using the traditional 0.5 threshold.

© A third possibility is to choose the threshold such that the fraction of above
threshold values ¢; = 1 in the sample is the same (or very close) to ¥:

ozzargmin{Z]l( (X[B) > ) Zyl}

e



Goodness of Fit

Predicted Probabilities

@ Problem: average predicted probabilities % >, Di = sample frequency .

@ Solution: use subsamples (e.g., cohort, income decile).

Actual vs. Predicted Choice Probabilities across Models
Choice probability, p(Ifp = 1)

o

Actual Data

--------- Logit
— — — = Probit
24 — — — OLS

20 30 40 50 60
Age




V.CTCU: 8l Binary Outcome Models

Goodness of Fit
Pseudo- R

@ A pseudo-R? is an extension of R? to nonlinear regression model.
@ Pseudo-R? measure proposed by McFadden (1974):

2o mLn(B) —InLly(y) WLy -mLln@y) | _Ln(5)
Inl—InLy(y) 0—Ln () Ly (7)
> {uin F(X[3) + (1 — ;) In[1 — F(X/3)]}
Nglng+ (1 -7 In(l —g)]
where In 1 is the maximum value in the support of a log-likelihood £y (5);
Inl— Lxn(y) is the maximum possible improvement from the likelihood of a
intercept-only model (only includes the constant term as regressor, §
estimated); and In £ () — In Ly () is the improvement in likelihood
achieved by the estimated B from the intercept-only model.
e RZ is the proportion of the actual increase in the likelihood to the maximum
possible increase of the likelihood, it increases as more regressors are added.
@ Because the log likelihood for a binary response model is always negative
(pe(0,1)=Inp<0),0>Lyx(B) > Lx (), and so the pseudo-R? is
always between zero and one.

=1
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Model Specification tests

Examples

o Wald Test: add regressors (X1, , Xk41) to the regression, test
Hy: (Bxs1,---Br41) = 0.

o Likelihood-ratio test: add regressors (X g1, , Xkt1) to the regression,
test Hy & InL = 1H£+l.

o Lagrange multiplier test: add regressor (X 3)2 to the regression, test on its
coefficient Hy : Srx+1 = 0.

o If the null is rejected, it means that the departure from X 3 in the direction of
an asymmetric form provides us a better model.
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Multinomial Logit

Multinomial logistic regression Number of obs = 147,843

LR chi2(28) = 20895.69
Prob > chi2 = 8.0000
Log likelihood = -113748.54 Pseudo R2 =  0.8812

sector Coefficient 5td. err. P>|z| [95% conf. interval

Not_participating (base outcome

Self_employed

age .3625662  .0081511 44.48 .3465904 3785421
age? -.004007 .0000939  -42.69 -.0041909 -.003823
married .1393773 .0279609 4.98 .0845749 .1941797

Model fit interpretation:

@ For multinomial models, Stata reports the pseudo-R? we've seen in the
binary model: B2 =1 — l?lLLf”, where In L is the log likelihood of an
intercept-only model, and In szt is the likelihood of the fitted model. And

again, for discrete dependent variables, R? has desirable properties including
that it increases as regressors are added for models fitted by ML.

@ The model fit is quite poor with pseudo-R? equal to 0.0812.

@ The LR chi-squred is super large (20095.69), hence the regressors are jointly
statistically significant at the 0.05 level.
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