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Introduction

Censoring

@ When a dependent variable has a mixed discrete/continuous distribution ...
@ Problem from the constrained dependent variable: a pile-up of observations
on a boundary, therefore, conventional (e.g. least squares) estimators are

biased for the population parameters of the uncensored distribution.

@ In censoring, we observe the characteristics (regressors) of the sample whose
y* is not observed.

Capacity Seats demanded

Capacity Tickets sold
Figure 1: Partially Censored Distribution
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Introduction

Truncation

@ Problem: incompletely observed sample, the sample is observed only if y* is
above/below a threshold. Clearly, conventional estimators are inconsistent
because a truncated sample is not representative of the population.

@ In truncation, we know noting about the missing sample (consider them as
who decided not to buy from me), even the characteristics (regressors).

- - -~ Truncation point

- Mean of distribution

I
i
i
I
}

021
I
i
|
)

05 1 2 3

1
1
1
1
I
T
|
1
|
1
|
1
1
I
1
1
|
0 i I I
-3 -2 -1 =05 0

X
Figure 2: Truncated Normal Distribution

2/42



Tobit Regression



Tobit Regression

Type-l Tobit
@ Without loss of generality, we consider the case of censoring from below at
zero:
_Jyt, vt >0
10 yr<o

@ Tobin(1958) proposed the censored regression (also known as Tobit
regression or Type-| Tobit):

Yy =X'B+e
£l X ~ N(0,0?)
y = max(y",0)

Positive values are uncensored and negative values are transformed to 0.
@ Problem: Tobit MLE relies crucially on normality.

nyﬂ *
f(y|X):{f*(y|X)7 y >0 _ ¢( o ) y >0
FH01X), y* <0 1—<I>(X—B), y* <0
ag
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Tobit Regression

Censored data

e Data (TA3.dta):

The data on the dependent variable for ambulatory expenditure (ambexp)
and the regressors (age, female, educ, blhisp, totchr, ins) are

taken from the 2001 Medical Expenditure Panel Survey (US).

Variable Obs Mean Std. Dev. Min Max
ambexp 3,328 1386.519 2530.486 ] 49960
age 3,328 4.056881 1.121212 2.1 6.4
female 3,328 .5084135 .5000043 ] 1
educ 3,328 13.40565 2.574199 ] 17
blhisp 3,328 .3085938 .4619824 ] 1
totchr 3,328 .4831731 .7720426 ] 5
ins 3,328 .3650841 .4815261 ] 1

In this sample of 3,328 observations, there are 526 (15.8%) zero values of
ambexp. Censoring might be an issue.
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Tobit Regression

Tobit Regression with Censored Data

@ Linear Tobit model:

tobit $xlist, 11(0) vce(robust)

Tobit regression Mumber of obs = 3,328

Uncensored = 2,802

Limits: Lower = ) Left-censored = 526

Upper = +inf Right-censored = )

F(e, 3322) = 59.52

Prob > F = 8.0000

Log pseudolikelihood = -26359.424 Pseudo R2 = 8.0138
Robust

ambexp | Coefficient std. err. t P>|t] [95% conf. intervall

age 314.1479 41.19122 7.63 e.000 233.3852 394.9107

female 684.9918 100.1353 6.84 0.000 488.6585 881.325

educ 70.8656 17.25925 4.11 e.000 37.02577 104.7054

blhisp -530.311 102.8097 =-5.16 0.000 ~-731.8877 -328.7342

totchr 1244.578 98.91188 12.58 0.000 1050.644 1438.513

ins ~167.4714 84.42021 -1.98 e.047 -332.9923 =1.95054

_cons -1882.591 317.2026 =-5.93 0.000 -2504.524 ~-1260.659

var(e.ambexp) 6635296 1088362 4818499 9152385

@ The interpretation of the coefficients is as a partial derivative of the latent

variable y* with respect to X.
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Marginal Effects

o Marginal effect varies according to whether interest lies in the latent variable
mean or the the truncated or censored means:

@ on latent variable mean

B(y'|z) = zf
OB(y"|r) _
T e P

@ on left-truncated (at 0) mean (check the Appendix for derivations)
E(yle,y > 0) = 26 + Elele > —f]
OB(ylz,y > 0) _ {1 _aBo(2) (¢><€f’> ” y

=

ox

@ on left-censored (at 0) mean

E(ylz) = P(e > —zf)[zf + E(ele > —zp)]

OE(lr) _ 428,

= ox
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Three Means
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Figure 3: The conditional mean (m) of censored distributions

@ Uncensored (y*); Censored (y); and Truncated (y*)
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Marginal Effects

When censoring is the case ...

e Example for using the ME on latent variable mean: income (usually
top-coded)

o Example for using the ME on censored mean: hours of work for workers
(participation, cersored from below)

o Example for using the ME on truncated mean: if a subsample of individuals
(who has hours of work exceeds 20 hours per week) is of interest.
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Tobit Regression

Marginal Effects

e ME for left-truncated (at 0) mean E(y|z,y > 0)

. mfx compute, predict(e(0, .))

Marginal effects after tobit

y = E(ambexp|ambexp>@) (predict, e(@, .})
= 2494.4777
variable dy/dx Std. err. z P>lz| I 95% C.I. 1 X
age 145.524 18.794 7.74 0.000 1e8.689 182.359 4.085688
femalex 317.1e37 44.117 7.19 0.ee0 230.636 403.572 .508413
educ 32.82734 7.79096 4.21 0.ee0 17.5573 48.0973 13.4056
blhispx =240.2953 46.59 =5.16 0.000 =331.61 -148.98 .308594
totchr 576.5387 44.95 12.83 0.000 488.43 664.632 .483173
ins* -77.19554 38.288 -2.02 0.844 -152.238 -2.15296 .365084

(#) dy/dx is for discrete change of dummy variable from @ to 1

@ The MEs here are smaller than the linear Tobit coefficient estimates 3 (=
ME on latent variable mean) given previously, as expected given the relatively
small variation in the range of y being considered.
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Tobit Regression

Marginal Effects

e ME for left-censored (at 0) mean E(y|z)

mfx compute, predict(ystar(O0,

Marginal effects after tobit

)

y = Elambexp*|ambexp=0) (predict, ystar(@, .})
= 1647.8587
variable dy/dx Std. err. z P>lz| I 95% C.I. 1 X
age 207.526 26.802 7.74 0.000 154.994 26@.058 4.085688
femalex 451.6399 62.751 7.20 0.000 328.651 574.629 .508413
educ 46.81378 11.116 4.21 0.ee0 25.0261 68.6015 13.4056
blhispx =342.4803 66.293 =5.17 0.000 -472.412 -212.549 .308594
totchr 822.1678 64.078 12.83 0.000 696.577 947.758 .483173
ins* -110.0883 54.609 -2.02 0.844 -217.119 -3.85739 .365084

(#) dy/dx is for discrete change of

dummy variable from @ to 1

@ The MEs for the censored mean are larger in absolute value than those for

the truncated mean and smaller than those for the latent mean (the

coefficient estimates from the Tobit regression).
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Model prediction

@ Data:

o Prediction:

ambexp

Percentiles smallest

1% [] L]

5% L] e
10% [] L] Obs 3,328
25% 113 e sum of Wgt. 3,328
50% 534.5 Mean 1386.519
Largest Std. Dev. 2530.406

75% 1618 28269
90% 3585 30920 Variance 6402953
95% 5451 34964 Skewness 6.059491
99% 11985 49960 Kurtosis 72.086738

Linear prediction

Percentiles Smallest

1% -968.7247 -1564.783

5% -557.2417 =1464.055
10% -281.8153 -1376.214 0bs 3,328
25% 192.9728 -1292.367 Sum of wgt. 3,328
50% 819.2401 Mean 1066.683
Largest Std. dev. 1257.455

75% 1742.236 7116.928
90% 2750.839 7199.602 Variance 1581194
95% 3497.282 7524.147 Skewness 1.13039
99% 5082.921 8027.957 Kurtosis 4.955689
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Model prediction

Ambulatory Expenditure: Data vs. Tobit Prediction
Frequency density
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Ambulatory expenditure

Figure 4: Data vs. fitted values of y*

Data Prediction |

@ The Tobit model fits especially poorly in the upper tail of the distribution.

12 /42



Tobit Regression

Normality

@ Detailed summary of ambexp:

@ The ambexp variable is heavily skewed (normal skewness = 0, positive
skewness = concentrated on the left) and has considerable non-normal
kurtosis (normal kurtosis = 3).

ambexp

Percentiles Smallest

1% ] ]

5% e e
10% ] ] Obs 3,328
25% 113 e Sum of Wgt. 3,328
50% 534.5 Mean 1386.519
Largest S5td. Dev. 2530.406

75% 1618 28269
90% 3585 3@920 Variance 6402953
95% 5451 34964 Skewness 6.0859491
99% 11985 49960 Kurtosis 72.06738

@ Tobit MLE, which relies crucially on normality, might be a flawed estimator

for the model.
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Tobit Regression

Normality

@ To see if these characteristics persist when the zero observations are ignored

(which creates a truncated distribution), we summarize for positives only:

ambexp

Percentiles Smallest

1% 22 1

5% 67 2
10% 107 2 0Obs 2,802
25% 275 4 Sum of Wgt. 2,802
50% 779 Mean 1646.8
Largest Std. Dew. 2678.914

75% 1913 28269
908% 3967 3e920 Variance 7176579
95% 6027 34964 Skewness 5.799312
99% 12467 49960 Kurtosis 65.81969

@ The skewness and non-normal kurtosis are reduced only a little if the zeros

are ignored.
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Normality

@ Could the skewness and non-normal kurtosis of ambexp be due to regressors
that are skewed? Let's try an OLS.

@ The OLS residuals have a skewness statistic of 6.6 and a kurtosis statistic of

Mean -B8.43e-07
Std. dev. 2319.71
Variance 5381@56
Skewness 6.602534
Kurtosis 92.24478

@ The skewness and non-normal kurtosis of ambexp are not due to regressors
that are skewed. Even after conditioning on regressors, the dependent
variable is very non-normal.

@ Possible solution: use log-normal transformation to reduce skewness.
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Tobit Regression

Log-normal transformation

@ Summary of 1n(ambexp):

lambexp

Percentiles Smallest

1% 3.091043 1]

5% 4.204693 .6931472
10% 4.672829 .6931472 Obs 2,802
25% 5.616771 1.386294 Sum of Wgt. 2,802
50% 6.65801 Mean 6.555066
Largest Std. Dev. 1.41073

75% 7.556428 10.24952
90% 8.285766 10.33916 Variance 1.990161
95% 8.704004 10.46207 Skewness -.3421614
99% 9.43084 10.81898 Kurtosis 3.127747

o 1n(ambexp) is almost symmetrically distributed. We expect that Tobit

model is better suited to modeling 1n(ambexp) than ambexp.
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Tobit Regression

Tobit for lognormal data

@ The Tobit model relies crucially on normality, but expenditure data are often
better modeled as log-normal, as we have just seen.

o Introduce log-normality:

y* _ ewﬂJre, €~ ./\/(0,02)
y*, if Iny* >~

when we observe that y = .
0, if Iny* >+~

@ In general v # 0 (see later pages for why).
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Tobit for lognormal data

o Setting the censoring point + for data in logs
o Why it is a problem: After the tranformation of the dependent variable to
logs, zero values will become missing.
e To avoid this loss, we set all censored observations of Iny to an amount
slightly smaller (relative to the scale of the vairable) than the minimum
noncensored value of Iny.

L Another complication if you are using Stata is that the smallest value of ambexp is 1, in
which case 1n(ambexp) equals zero. Stata will mistakenly treats this observation as censored,
leading to a shrinkage in the sample size for noncensored observations.
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Tobit for lognormal data

@ Compare Tobit and OLS of the Log-normal data on the regressors:

(1) (2)

tobit_log ols_log
main
age 0.3634x¢ (0.0457) 0.325x+x (0.0388)
female 1.34240x  (2.0991) 1.145%+x (0.0832)
educ 0.138+xx (0.0201) @.114x*x (0.0165)
blhisp -0.873kxkx (e.117) -0.734%kx  (0.0974)
totchr 1.1614%+ (@.8538) 1.85%%+x (0.0463)
ins @.261%* {9.0989) 0.208% (e.0841)
_cons 0. 924%% (@.355) 1.729%k% (0.287)
/
var(e.lny) 7.73546%  (0.284)
N 3328 3328

Standard errors in parentheses
* p<0.05, *+ p<@.01, **+ p<0.001

@ All OLS coefficients but the intercept are smaller in absolute terms, which is
the impact of censoring. The larger the proportion of censored observations,
the more biased the OLS estimates.
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Truncated Tobit

truncreg lny age female educ blhisp totchr inms,
11 (gammaO1) vce(robust)

(1) (2)

truncat~g censor_~g
main
age 0.217+xx (0.0221) 0.363xxx (0.0457)
Temale 0.37%+x+ (0.0489) 1.342%+x (0.0991)
educ 0.08222x% (8.00965) 0.138x%x (0.0201)
blhisp =0.239%kxx (0.0560) =0 .87 3%k (0.117)
totchr 0.5624x¢ (0.0282) 1.161lx*x (0.0538)
ins -0.0208 (0.0487) 0.261x% (0.0989)
_cons 4. 908%x% (0.172) 0.924%% (8.355)
!
sigma 1.268%xk (0.0192)
var(e.lny) T.735%%x  (0.284)
N 2802 3328

Standard errors in parentheses
* p<0.05, ** p<@.01, *** p<@.001
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Model Prediction

Conditional and Unconditional Means for Models in Logs

@ In the Tobit regression for lognormal data, the dependent variable is Iny
instead of y. But the interest is still in predicting spending in levels rather
than logs.

@ Because of the strict convexity of the exponential function, by Jensen
Inquality,

exp [E(x)] > E [exp(x)]

0,2

Therefore in model predictions, we see a correction for the convexity: —%-.

Moment Model Prediction function
E(ylx,y > 0) Tobit exp(x'B+02/2)[1 — ®{(v —x'B)/o}] !
[1-&{(v-x'B~-0%)/0}]
E(y|x) Tobit exp(x'B + 02/2)[1 — @{(y —x'B —0?)/0}]
E(ya|x,y2 > 0) Two-part exp(x58, + 03/2)
E(yz2|x) Two-part — exp(xy8; +03/2)®(x;8;)

E(ya2|x,y2 > 0) Selection  exp(x58, + 03/2){1 — ®(—x}3;)} !
{1 = 2(=x18, — o)}
E(ya2|x) Selection  exp(x548, + 03/2){1 — &(—x1B, — 05)}

Source: Cameron and Trivedi (2022) Book 21/42



Model Specification

o Concerns:

© If we perform tests for normality and homoskedasticity to our censored
regression, we see a failure in both assumptions, even though the expenditure
ambexp was transformed to logarithms (if the error is either heteroskedastic or
nonnormal the MLE not even inconsistent).

@ The censoring mechanism and outcome may be modeled using separate
processes (e.g., one process determine hospitalization, another on consequent
hospital expenses).

o Next step: a more general model.
@ Two approaches to such generalization:

© Two-part model: specifies one model for the censoring mechanism and a
second distinct model for the outcome conditional on the outcome being
observed.

@ Sample-selction model: specifies a joint distribution for the censoring
mechanism and outcome, and then finds the implied distribution conditional
on the outcome observed.
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Two-part Model



Two-part Model

Two-part model

@ The tobit regression makes a strong assumption that the same probability
mechanism generates both the zeros (censoring point) and the positives.

o Two-part model?: a more flexible model which allows for the possibility that
the zero and positive values are generated by different mechanisms, and thus
can provide a better fit. Again, we apply it to a model in logs rather than in
levels.

o 1st part: a binary outcome model that models P(y > 0), using any binary
outcome model considered in previous chapter (usually probit), all
observations are used for estimation;

e 2nd part: a linear regression that models E(y|y > 0), only observations with
y > 0 are used.

@ The two parts are assumed to be independent and are usually estimated
separately.

2also known as a hurdle model, since crossing a hurdle or a threshold leads to participation
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Two-part Model

Two-part model

o Let y denote ambexp.
o 1st part: define a binary indicator d such that

1, >0
="
0, y=0
e 2nd part: For those with y > 0, let f(y|d = 1) be the conditional density of y.
When y = 0, we observe only P(d = 0).

@ The two-part model for y is then given by

P(d=1x)- f(yld =1,x), y>0

flylx) = {Pu_OX)’ y=0

Often the same regressors appear in both parts of the model, but this can
and should be relaxed if there are obvious exclusion restrictions.
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Two-part Model

Two-part model

@ Part 1: MLE of a discrete choice model using all observations.
probit dy $xlist, vce(robust)

o Part 2: estimation of the parameters of the conditional density using only
the observations with y > 0.

reg lny $xlist if dy==1, vce(robust)

(1) (2)

partl_p~t part2_ols
main
age 0.0973xxx (0.0273) 0.217x+x (0.0221)
female 0.644%xx (0.0610) 0.379xxx (0.0490)
educ 0.0702%xk (0.0109) 0.8222x% (0.00966)
blhisp =0.374%++ (0.0618) -0.239%++ (0.0560)
totchr 0.794%%x (8.0740) 0.562++x (0.0282)
ins 0.181%x (9.0612) -0.0208 (e.0488)
_cons -@.718%x%x (8.186) 4.908%¥% (8.172)
N 3328 2802

Standard errors in parentheses
* p<0.05, ** p<@.01, *** p<@.001

@ The coefficients in the two parts have the same sign, aside from the ins
variable, which is highly statistically insignificant in the second part.
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Two-part Model

Two-part model

@ Given the assumption that the two parts are independent, the joint likelihood
for the two parts is the sum of the two log likelihoods.

scalar lltwopart = llprobit + lllognormal
display "lltwopart = " lltwopart
lltwopart = -5838.8218

@ For comparison, the log likelihood for the previous log-normal Tobit is
-7494.29.

@ The two-part model fits the data considerably better, even if AIC or BIC is
used to penalize the two-part model for its additional parameters.

@ Concern: no link allowed between the two parts.

@ Solution: to allow for the possible dependence in the two parts, we shall
adopt a bivariate sample-selection model.
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Selection

o If the reason the observations are missing is appropriately exogenous, using
the subsample has no serious consequences.

@ Selection occurs when sampling is endogenous. Pure random samples are
rare.

@ Problem: the sample drawn from a subset of the population is used to
estimate unknown population parameters.

@ Some mechanisms are due to sample design, while others are due to the
behavior of the units being sampled. Examples:
© migration: self-selection to migrate
@ wage regression: the decision to work
© survey data: nonresponse/noncompletion
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Sample Selection

Example: sampling based on an explanatory variable

Suppose we wish to estimate a saving function for all families in a given country,
and the population saving function is

saving = Py + Brincome + Baage + Psmarried + fakids + €

where age the age of the household head and the other vairables are
self-explanatory. Now we only have a restricted sample of which the household
head was 45 years old or older. A sample selection issues is then raised here since
we can obtain a random sample only for a subset of the population.

28 /42




Sample Selection

Example: sampling based on a response variable

We are interested in esimating the effect of worder eligibility in a particular
pension plan on family wealth. The population model is

wealth = By + P1plan + Baeduc + Bzage + Pfyincome + €

where plan is a binary variable indicator for the eligibility in the pension plan.
However, we can sample people with a net wealth less than 200k USD, so the
sample is selected on the basis of wealth. Sampling based on a response variable
is much more serious than sampling based on an exogenous variable.
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Sample Selection Model

Example: labor force participation and the wage offer (Gronau, 1974)

Interest lies in estimating E(w?|z;), where w? is the wage offer for a
randomly drawn individual 3.

A potential sample selection problem arises because wy is observed only for
people who work.

Assume an individual ¢ has a reservation wage level w], she decides to work
only if w¢ > wy.

Now we make parametric assumptions:

o _ w1 fitua T, Ti2f2+tuiz
w) = v R i

Then the wage offer is observed only if the individual works, that is only if

o r
lnwi — lnwi = .’1%‘151 — .’Eigﬁg + U1 —ujip >0
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Sample Selection Model

Example: labor force participation and the wage offer (Gronau, 1974)

@ Then there is a potential sample selection problem if we want to estimate the
wage equation

o
Inw; = x4 81 + ui

but use only the data on working people.

@ This example differs in an important respect from top-coding, where the
censoring rule is known for each unit in the population.

@ In the current example, we do not know the individual reservation wage,
so we cannot use the wage offer in a censored regression analysis.

@ More importantly, the reservation wage is allowed to depend on
unobservables, so we need a new framework.
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Bivariate Sample Selection Model
Type Il Tobit Model (Amemiya, 1985)

@ Sample selection bias can be corrected if we have a sample which includes
the non-selected observations (Heckman, 1979).

@ A bivariate sample selection model comprises
e a participation equation that

ED yi >0
70, wi<o

e a resultant outcome equation that

-~ Y2, y1 >0
v missing, y; <0
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Bivariate Sample Selection Model
Type Il Tobit Model (Amemiya, 1985)

@ The standard model specifies a linear model with additive errors for the latent
variables,

Y1 = X101 + €1

Y3 = X202 + &2
with problem arising in estimating 35 if £; and &5 are correlated. The Tobit
model is a special case where y; = y;.

o It's assumed that the correlated errors {e1,e3} are jointly normally
distributed and homoskedastic.

@ The likelihood function for this model is

c=1{ [Pl <01 [flulyti > 0) x Pluf, > 0 }

contribution when y7, <0 contribution when y¥, >0
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Heckman Two-Step Estimator
Step 1

o Step 1: estimate yi on x; using Probit

P(yy > 0) =P(21581 + &1 > 0)
:P(é‘l > *zlﬂl)

:P(il S _$151>
g1 g1

-e()

———
51'\‘/\/-(0,0%)

@ In this step, % is identified.
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Heckman Two-Step Estimator
Step 2

o Step 2: y3 on x

E(ya|x,y7 > 0) = x262 + E(e2|y; > 0)
= w23 + E(ezler > —x151) (1)
=A

e Without information on the selection process (correlation between €1 and e3)
there is little that can be done to “correct” the selection bias (A) other than
to be aware of its presence.

@ Heckman(1979) on the correlated errors (the projection of €1 on &3):

€9 =de1 +17 (2)
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Heckman Two-step Estimator
Step 2

@ Endogenous selection changes the conditional mean:
(1)&(2) = E(ya|x,y7 > 0) = 2282 + E(de1 + nler > —x151)
= Taf2 + A ( )

@ In Heckman's two-step procedure, step 2 uses positive values of ys to
estimate by OLS the model

Z1

1
01

where €1 ~ N(0,0%) is assumed.

-

a(5r)

Yo = x2f2 + O +v

—

where (%) comes from step 1.

@ In step 2, B2 and § are identified.
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~ Selection |
FIML without Exclusion Restrictions

@ Heckman FIML without exclusion restrictions (1 = x5 for the two steps):

heckman lny $xlist, select(dy = $xlist)

@ The log likelihood for this model (-5838.397) is only slightly higher than that
for the two-part model (-5838.822).

rho
sigma
lambda

~-.3012415
1.233435
-.3912379

.8611142
1.3e9171
.87558085

-.1242024
1.2708739
-.1578287

.08934546
.019318
.1190885

Wald test of

@ rho: the estimated

indep. eqgns. (rho = @): chi2(1) = 1.73 Prob > chi2 = 0.1884

cov(eq,e2)
0517052

correlation (p12 =

) between the errors.

@ The Wald test on Hy : rho = 0 implies we can't reject the null that the two
parts of the model are independent.
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FIML without Exclusion Restrictions

@ The bivariate sample selection model with normal errors is theoretically
identified without any restriction on the regressors. But there are some
practical concerns...

o Without exclusion restrictions, we rely on the nonlinearity (by Probit, which
automatically generates exclusion restrictions) of the selection regression to
generate the needed source of variation in the probability of a positive
outcome.

@ If the nonlinearity implied by the Probit model is small (small variation in
z1/31 across observations), then identification will be fragile.
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Heckman Two-Step Estimator

LIML without Exclusion Restrictions

The one-step FIML estimation is based on a bivariate normality assumption
((e1,e2) ~ N3) that is itself suspect.

The Heckit (LIML) with a univariate normality assumption
(e1 ~ N,e2 = de1 + 1) is expected to be more robust.

Heckit without exclusion restrictions:

heckman lny $xlist, select(dy = $xlist) twostep

/mills
lambda -.4801696 .2986565 -1.65 ©8.099 -1.049846 .B895067

rho -0.37130
sigma 1.2932083

The coefficient for lambda is the estimated § (-0.48, p = 0.099). When it is
significant, we should obtain the corrected standard errors.
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Exclusion Restrictions

(1) (2) (3)

HKM_FIML HKM_LIML HKM_LIML_ex
lny
age 0.212%%% (e.0230) 0.202%%x (0.0243) 0.202%%k (0.0242)
female 0. 3500k (0.0597) 0. 289s0k0k (0.0737) 0. 292sk% (0.0726)
educ 8.0189 (e.e105) 09.8120 (0.0117) 09.8124 (8.0116)
blhisp =0.220%%% (e.0595) =0.181%* (8.0659) =0.183%* (8.0653)
totchr 0.54 1%k (e.0391) 0. 4985k (@8.0495) 8.50 Lk (@.0486)
ins -8.8295 (e.e518) -8.8474 (8.0532) ~0.0465 (8.0538)
_cons 5.037%k% (0.226) 5.38 3%k (0.294) 5.28%%k% (@.289)
dy
age 8.0984%x% (e.0278) 0.0973%k% (e.0278) 0.0868x%* (8.0275)
female 0. 644k (e.e0601) 0. 644k (8.0601) 8. 664kkx (8.0610)
educ 0.8782%x% (0.0113) 0.0702%%x% (8.0113) 0.0619%%* (8.0120)
blhisp =0.373%x% (8.0617) =0 .37 4s%%kx (0.0618) =8 .366%%k% (e.0619)
totchr 0.795%k% (e.0718) 0.794%%% (0.8711) 0.796%k% (e.0712)
ins 0.182%x (e.0625) 0.181%* (0.0626) 0.169%%* (8.0629)
income 0.80268% (0.00131)
_cons =0.724%%x (0.192) =0.718xkx (8.192) =0.66%%kxk (8.194)

@ The standard errors from LIML are in general larger than those from the

FIML, both without exclusion restriction. Usually this imprecision is due to
the collinearity that comes from the outcome equation.
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Exclusion Restrictions

@ The model is theoretically identified without any restriction on the regressors
x1 and zs.

@ But notice that when x1 = x4, 35 is indentified only due to the nonlinearity
of the inverse Mills ratio A(z131).

@ The collinearity happens when there is not much variation in 131, and the
inverse mills ratio A\(x1/1) can be approximated well by a linear function of
xI1.

o If this is the case, then A(z1/31) is collinear with the other regressors () in
the outcome equation.

@ Having exclusion restrictions, so that x; # x4, will reduce the collinearity
problem and provide more robust identification, especially in small samples.

@ How? Usually we include extra regressors in x.

@ Why? x5 would only need to be observed whenever ys is (positive values of
y1), whereas 21 must always be observed (all values of y;), which implies
that 7 may contain elements that cannot also appear in z5.
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Heckman Two-Step Estimator
LIML with Exclusion Restrictions

This requires that the participation (selection) equation (step 1) have an
exogenous variable that is excluded from the outcome equation (step 2).

Heckit with exlusion restriction:

heckman lny $xlist, select(dy = $xlist income) twostep

income .0026773 .8013105 2.04 0.041 .0001088 .80852458
_cons -.6686471 .1941247 -3.44 @.0el -1.049125 -.2B81698

/mills
lambda -.4637133 .2825997 =1.64 e.l1el =1.017598 .090172

Bincome = 0003, p = 0.041.

But the use of this exclusion restriction is debatable as there are reasons to
expect that income should also appear in the outcome equation. It's often
very difficult to make defensible exclusion restrictions.
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Truncated First Moment of Normal

The truncated first moment used in Heckman's approach step 2:
E(y2|71, 72, y7 > 0) =2202 + E(ea|2161 + €1 > 0)
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Truncated First Moment of Normal
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