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Introduction

Censoring

When a dependent variable has a mixed discrete/continuous distribution ...
Problem from the constrained dependent variable: a pile-up of observations
on a boundary, therefore, conventional (e.g. least squares) estimators are
biased for the population parameters of the uncensored distribution.
In censoring, we observe the characteristics (regressors) of the sample whose
y∗ is not observed.

Figure 1: Partially Censored Distribution
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Introduction

Truncation

Problem: incompletely observed sample, the sample is observed only if y∗ is
above/below a threshold. Clearly, conventional estimators are inconsistent
because a truncated sample is not representative of the population.
In truncation, we know noting about the missing sample (consider them as
who decided not to buy from me), even the characteristics (regressors).

Figure 2: Truncated Normal Distribution
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Tobit Regression



Tobit Regression

Type-I Tobit

Without loss of generality, we consider the case of censoring from below at
zero:

y =

®
y∗, y∗ > 0

0, y∗ ≤ 0

Tobin(1958) proposed the censored regression (also known as Tobit
regression or Type-I Tobit):

y∗ = X ′β + ε

ε|X ∼ N (0, σ2)

y = max(y∗, 0)

Positive values are uncensored and negative values are transformed to 0.
Problem: Tobit MLE relies crucially on normality.

f(y|X) =

®
f∗(y|X), y∗ > 0

F ∗(0|X), y∗ ≤ 0
=


ϕ

Å
y −Xβ

σ

ã
, y∗ > 0

1− Φ

Å
Xβ

σ

ã
, y∗ ≤ 0
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Tobit Regression

Censored data

Data (TA3.dta):
The data on the dependent variable for ambulatory expenditure (ambexp)
and the regressors (age, female, educ, blhisp, totchr, ins) are
taken from the 2001 Medical Expenditure Panel Survey (US).

In this sample of 3,328 observations, there are 526 (15.8%) zero values of
ambexp. Censoring might be an issue.
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Tobit Regression

Tobit Regression with Censored Data

Linear Tobit model:
. tobit $xlist, ll(0) vce(robust)

The interpretation of the coefficients is as a partial derivative of the latent
variable y∗ with respect to X.
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Tobit Regression

Marginal Effects

Marginal effect varies according to whether interest lies in the latent variable
mean or the the truncated or censored means:

1 on latent variable mean

E(y∗|x) = xβ

⇒ ∂E(y∗|x)
∂x

= β

2 on left-truncated (at 0) mean (check the Appendix for derivations)

E(y|x, y > 0) = xβ + E[ε|ε > −xβ]

⇒ ∂E(y|x, y > 0)

∂x
=

[
1− xβ

σ

ϕ(xβ
σ
)

Φ(xβ
σ
)
−
Ç

ϕ(xβ
σ
)

Φ(xβ
σ
)

å2
]
· β

3 on left-censored (at 0) mean

E(y|x) = P (ε > −xβ)[xβ + E(ε|ε > −xβ)]

⇒ ∂E(y|x)
∂x

= Φ(
xβ

σ
) · β
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Tobit Regression

Three Means

Figure 3: The conditional mean (m) of censored distributions

Uncensored (y∗); Censored (y); and Truncated (y#)
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Tobit Regression

Marginal Effects

When censoring is the case ...
Example for using the ME on latent variable mean: income (usually
top-coded)
Example for using the ME on censored mean: hours of work for workers
(participation, cersored from below)
Example for using the ME on truncated mean: if a subsample of individuals
(who has hours of work exceeds 20 hours per week) is of interest.
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Tobit Regression

Marginal Effects

ME for left-truncated (at 0) mean E(y|x, y > 0)

. mfx compute, predict(e(0, .))

The MEs here are smaller than the linear Tobit coefficient estimates β̂ (=
ME on latent variable mean) given previously, as expected given the relatively
small variation in the range of y being considered.
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Tobit Regression

Marginal Effects

ME for left-censored (at 0) mean E(y|x)
. mfx compute, predict(ystar(0, .))

The MEs for the censored mean are larger in absolute value than those for
the truncated mean and smaller than those for the latent mean (the
coefficient estimates from the Tobit regression).
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Tobit Regression

Model prediction

Data:

Prediction:
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Tobit Regression

Model prediction

Figure 4: Data vs. fitted values of y∗

The Tobit model fits especially poorly in the upper tail of the distribution.
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Tobit Regression

Normality

Detailed summary of ambexp:

The ambexp variable is heavily skewed (normal skewness = 0, positive
skewness = concentrated on the left) and has considerable non-normal
kurtosis (normal kurtosis = 3).
Tobit MLE, which relies crucially on normality, might be a flawed estimator
for the model.
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Tobit Regression

Normality

To see if these characteristics persist when the zero observations are ignored
(which creates a truncated distribution), we summarize for positives only:

The skewness and non-normal kurtosis are reduced only a little if the zeros
are ignored.
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Tobit Regression

Normality

Could the skewness and non-normal kurtosis of ambexp be due to regressors
that are skewed? Let’s try an OLS.
The OLS residuals have a skewness statistic of 6.6 and a kurtosis statistic of
92.2.

The skewness and non-normal kurtosis of ambexp are not due to regressors
that are skewed. Even after conditioning on regressors, the dependent
variable is very non-normal.
Possible solution: use log-normal transformation to reduce skewness.
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Tobit Regression

Log-normal transformation

Summary of ln(ambexp):

ln(ambexp) is almost symmetrically distributed. We expect that Tobit
model is better suited to modeling ln(ambexp) than ambexp.
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Tobit Regression

Tobit for lognormal data

The Tobit model relies crucially on normality, but expenditure data are often
better modeled as log-normal, as we have just seen.
Introduce log-normality:

y∗ = exβ+ε, ε ∼ N (0, σ2)

when we observe that y =

®
y∗, if ln y∗ > γ

0, if ln y∗ ≥ γ

In general γ ̸= 0 (see later pages for why).
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Tobit Regression

Tobit for lognormal data

Setting the censoring point γ for data in logs
Why it is a problem: After the tranformation of the dependent variable to
logs, zero values will become missing.1

To avoid this loss, we set all censored observations of ln y to an amount
slightly smaller (relative to the scale of the vairable) than the minimum
noncensored value of ln y.

1Another complication if you are using Stata is that the smallest value of ambexp is 1, in
which case ln(ambexp) equals zero. Stata will mistakenly treats this observation as censored,
leading to a shrinkage in the sample size for noncensored observations.
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Tobit Regression

Tobit for lognormal data

Compare Tobit and OLS of the Log-normal data on the regressors:

All OLS coefficients but the intercept are smaller in absolute terms, which is
the impact of censoring. The larger the proportion of censored observations,
the more biased the OLS estimates.
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Tobit Regression

Truncated Tobit

. truncreg lny age female educ blhisp totchr ins,
ll(gamma01) vce(robust)
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Tobit Regression

Model Prediction
Conditional and Unconditional Means for Models in Logs

In the Tobit regression for lognormal data, the dependent variable is ln y
instead of y. But the interest is still in predicting spending in levels rather
than logs.
Because of the strict convexity of the exponential function, by Jensen
Inquality,

exp [E(x)] ≥ E [exp(x)]

Therefore in model predictions, we see a correction for the convexity: −σ2

2 .

Source: Cameron and Trivedi (2022) Book 21 / 42



Tobit Regression

Model Specification

Concerns:
1 If we perform tests for normality and homoskedasticity to our censored

regression, we see a failure in both assumptions, even though the expenditure
ambexp was transformed to logarithms (if the error is either heteroskedastic or
nonnormal the MLE not even inconsistent).

2 The censoring mechanism and outcome may be modeled using separate
processes (e.g., one process determine hospitalization, another on consequent
hospital expenses).

Next step: a more general model.
Two approaches to such generalization:

1 Two-part model: specifies one model for the censoring mechanism and a
second distinct model for the outcome conditional on the outcome being
observed.

2 Sample-selction model: specifies a joint distribution for the censoring
mechanism and outcome, and then finds the implied distribution conditional
on the outcome observed.
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Two-part Model

Two-part model

The tobit regression makes a strong assumption that the same probability
mechanism generates both the zeros (censoring point) and the positives.
Two-part model2: a more flexible model which allows for the possibility that
the zero and positive values are generated by different mechanisms, and thus
can provide a better fit. Again, we apply it to a model in logs rather than in
levels.

1st part: a binary outcome model that models P(y > 0), using any binary
outcome model considered in previous chapter (usually probit), all
observations are used for estimation;
2nd part: a linear regression that models E(y|y > 0), only observations with
y > 0 are used.

The two parts are assumed to be independent and are usually estimated
separately.

2also known as a hurdle model, since crossing a hurdle or a threshold leads to participation
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Two-part Model

Two-part model

Let y denote ambexp.
1st part: define a binary indicator d such that

d =

®
1, y > 0

0, y = 0

2nd part: For those with y > 0, let f(y|d = 1) be the conditional density of y.
When y = 0, we observe only P(d = 0).

The two-part model for y is then given by

f(y|x) =
®
P (d = 1|x) · f(y|d = 1,x), y > 0

P (d = 0|x), y = 0

Often the same regressors appear in both parts of the model, but this can
and should be relaxed if there are obvious exclusion restrictions.
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Two-part Model

Two-part model

Part 1: MLE of a discrete choice model using all observations.
. probit dy $xlist, vce(robust)
Part 2: estimation of the parameters of the conditional density using only
the observations with y > 0.
. reg lny $xlist if dy==1, vce(robust)

The coefficients in the two parts have the same sign, aside from the ins
variable, which is highly statistically insignificant in the second part.
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Two-part Model

Two-part model

Given the assumption that the two parts are independent, the joint likelihood
for the two parts is the sum of the two log likelihoods.
. scalar lltwopart = llprobit + lllognormal

. display "lltwopart = " lltwopart

lltwopart = -5838.8218

For comparison, the log likelihood for the previous log-normal Tobit is
-7494.29.
The two-part model fits the data considerably better, even if AIC or BIC is
used to penalize the two-part model for its additional parameters.
Concern: no link allowed between the two parts.
Solution: to allow for the possible dependence in the two parts, we shall
adopt a bivariate sample-selection model.
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Selection

Selection

If the reason the observations are missing is appropriately exogenous, using
the subsample has no serious consequences.
Selection occurs when sampling is endogenous. Pure random samples are
rare.
Problem: the sample drawn from a subset of the population is used to
estimate unknown population parameters.
Some mechanisms are due to sample design, while others are due to the
behavior of the units being sampled. Examples:

1 migration: self-selection to migrate
2 wage regression: the decision to work
3 survey data: nonresponse/noncompletion
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Selection

Sample Selection

Example: sampling based on an explanatory variable

Suppose we wish to estimate a saving function for all families in a given country,
and the population saving function is

saving = β0 + β1income+ β2age+ β3married+ β4kids+ ε

where age the age of the household head and the other vairables are
self-explanatory. Now we only have a restricted sample of which the household
head was 45 years old or older. A sample selection issues is then raised here since
we can obtain a random sample only for a subset of the population.
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Selection

Sample Selection

Example: sampling based on a response variable

We are interested in esimating the effect of worder eligibility in a particular
pension plan on family wealth. The population model is

wealth = β0 + β1plan+ β2educ+ β3age+ β4income+ ε

where plan is a binary variable indicator for the eligibility in the pension plan.
However, we can sample people with a net wealth less than 200k USD, so the
sample is selected on the basis of wealth. Sampling based on a response variable
is much more serious than sampling based on an exogenous variable.
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Selection

Sample Selection Model

Example: labor force participation and the wage offer (Gronau, 1974)

Interest lies in estimating E(wo
i |xi), where wo

i is the wage offer for a
randomly drawn individual i.
A potential sample selection problem arises because wo

i is observed only for
people who work.
Assume an individual i has a reservation wage level wr

i , she decides to work
only if wo

i > wr
i .

Now we make parametric assumptions:

wo
i = exi1β1+ui1 , wr

i = exi2β2+ui2

Then the wage offer is observed only if the individual works, that is only if

lnwo
i − lnwr

i = xi1β1 − xi2β2 + ui1 − ui2 > 0
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Selection

Sample Selection Model

Example: labor force participation and the wage offer (Gronau, 1974)

Then there is a potential sample selection problem if we want to estimate the
wage equation

lnwo
i = xi1β1 + ui1

but use only the data on working people.
This example differs in an important respect from top-coding, where the
censoring rule is known for each unit in the population.
In the current example, we do not know the individual reservation wage,
so we cannot use the wage offer in a censored regression analysis.
More importantly, the reservation wage is allowed to depend on
unobservables, so we need a new framework.
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Selection

Bivariate Sample Selection Model
Type II Tobit Model (Amemiya, 1985)

Sample selection bias can be corrected if we have a sample which includes
the non-selected observations (Heckman, 1979).
A bivariate sample selection model comprises

a participation equation that

y1 =

®
1, y∗1 > 0

0, y∗1 ≤ 0

a resultant outcome equation that

y2 =

®
y∗
2 , y∗1 > 0

missing, y∗1 ≤ 0
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Selection

Bivariate Sample Selection Model
Type II Tobit Model (Amemiya, 1985)

The standard model specifies a linear model with additive errors for the latent
variables,

y∗1 = x1β1 + ε1

y∗2 = x2β2 + ε2

with problem arising in estimating β2 if ε1 and ε2 are correlated. The Tobit
model is a special case where y∗1 = y∗2 .
It’s assumed that the correlated errors {ε1, ε2} are jointly normally
distributed and homoskedastic.
The likelihood function for this model is

L = Πi

{
[P (y∗1i ≤ 0)]1−y1i︸ ︷︷ ︸

contribution when y∗
1i≤0

[f(y2i|y∗1i > 0)× P (y∗1i > 0)]y1i︸ ︷︷ ︸
contribution when y∗

1i>0

}
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Selection

Heckman Two-Step Estimator
Step 1

Step 1: estimate y∗1 on x1 using Probit

P(y∗1 > 0) = P(x1β1 + ε1 > 0)

= P (ε1 > −x1β1)

= P
Å
ε1
σ1

> −x1β1

σ1

ã
= 1− Φ

Å
−x1β1

σ1

ã
︸ ︷︷ ︸
ε1∼N (0,σ2

1)

In this step, β1

σ1
is identified.
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Selection

Heckman Two-Step Estimator
Step 2

Step 2: y∗2 on x2

E(y2|x, y∗1 > 0) = x2β2 + E(ε2|y∗1 > 0)

= x2β2 + E(ε2|ε1 > −x1β1)︸ ︷︷ ︸
≡∆

(1)

Without information on the selection process (correlation between ε1 and ε2)
there is little that can be done to “correct” the selection bias (∆) other than
to be aware of its presence.
Heckman(1979) on the correlated errors (the projection of ε1 on ε2):

ε2 = δε1 + η (2)
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Selection

Heckman Two-step Estimator
Step 2

Endogenous selection changes the conditional mean: Derivations

(1)&(2) ⇒ E(y2|x, y∗1 > 0) = x2β2 + E(δε1 + η|ε1 > −x1β1)

= x2β2 + δλ

Å
x1β1

σ1

ã
where ε1 ∼ N (0, σ2

1) is assumed.
In Heckman’s two-step procedure, step 2 uses positive values of y2 to
estimate by OLS the model

y2 = x2β2 + δλ

[
x1

÷Åβ1

σ1

ã]
+ ν (3)

where ’Äβ1

σ1

ä
comes from step 1.

In step 2, β2 and δ are identified.
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Selection

FIML without Exclusion Restrictions

Heckman FIML without exclusion restrictions (x1 = x2 for the two steps):
. heckman lny $xlist, select(dy = $xlist)

The log likelihood for this model (-5838.397) is only slightly higher than that
for the two-part model (-5838.822).

rho: the estimated correlation (ρ12 = cov(ε1,ε2)
σε1σε2

) between the errors.

The Wald test on H0 : rho = 0 implies we can’t reject the null that the two
parts of the model are independent.
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Selection

FIML without Exclusion Restrictions

The bivariate sample selection model with normal errors is theoretically
identified without any restriction on the regressors. But there are some
practical concerns...
Without exclusion restrictions, we rely on the nonlinearity (by Probit, which
automatically generates exclusion restrictions) of the selection regression to
generate the needed source of variation in the probability of a positive
outcome.
If the nonlinearity implied by the Probit model is small (small variation in
x1β̂1 across observations), then identification will be fragile.
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Selection

Heckman Two-Step Estimator
LIML without Exclusion Restrictions

The one-step FIML estimation is based on a bivariate normality assumption
((ε1, ε2) ∼ N2) that is itself suspect.
The Heckit (LIML) with a univariate normality assumption
(ε1 ∼ N , ε2 = δε1 + η) is expected to be more robust.
Heckit without exclusion restrictions:
. heckman lny $xlist, select(dy = $xlist) twostep

The coefficient for lambda is the estimated δ (-0.48, p = 0.099). When it is
significant, we should obtain the corrected standard errors.
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Selection

Exclusion Restrictions

The standard errors from LIML are in general larger than those from the
FIML, both without exclusion restriction. Usually this imprecision is due to
the collinearity that comes from the outcome equation.
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Selection

Exclusion Restrictions

The model is theoretically identified without any restriction on the regressors
x1 and x2.
But notice that when x1 = x2, β2 is indentified only due to the nonlinearity
of the inverse Mills ratio λ(x1β1).
The collinearity happens when there is not much variation in x1β1, and the
inverse mills ratio λ(x1β1) can be approximated well by a linear function of
x1.
If this is the case, then λ(x1β̂1) is collinear with the other regressors (x2) in
the outcome equation.
Having exclusion restrictions, so that x1 ̸= x2, will reduce the collinearity
problem and provide more robust identification, especially in small samples.
How? Usually we include extra regressors in x1.
Why? x2 would only need to be observed whenever y2 is (positive values of
y1), whereas x1 must always be observed (all values of y1), which implies
that x1 may contain elements that cannot also appear in x2.
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Selection

Heckman Two-Step Estimator
LIML with Exclusion Restrictions

This requires that the participation (selection) equation (step 1) have an
exogenous variable that is excluded from the outcome equation (step 2).
Heckit with exlusion restriction:
. heckman lny $xlist, select(dy = $xlist income) twostep

β̂income = 0.003, p = 0.041.
But the use of this exclusion restriction is debatable as there are reasons to
expect that income should also appear in the outcome equation. It’s often
very difficult to make defensible exclusion restrictions.
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Appendix

Truncated First Moment of Normal

The truncated first moment used in Heckman’s approach step 2:

E(y2|x1, x2, y
∗
1 > 0) =x2β2 +E(ε2|x1β1 + ε1 > 0)

(2)
=x2β2 +E (δε1|ε1 > −x′

1β1)

=x2β2 + δE

Å
ε1
σ1

∣∣∣∣ ε1σ1
>

−x′
1β1

σ1

ã
,

ε1
σ

∼ N (0, 1)

=x2β2 + δ

∫ ∞

−x1β1
σ1

u · f
Å
u

∣∣∣∣u >
−x′

1β

σ1

ã
du, u ∼ N (0, 1)

=x2β2 + δ
1

1− Φ
Ä
−x1β1

σ1

ä ∫ ∞

−x1β1
σ1

u · ϕ(u)du

=x2β2 + δ
1

1− Φ
Ä
−x1β1

σ1

ä [u · Φ(u)
∣∣∣∞−x1β1

σ1

−
∫ ∞

−x1β1
σ1

Φ(u)du

]
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Appendix

Truncated First Moment of Normal

· · · = x2β2 + δ
1

1− Φ
Ä
−x1β1

σ1

ä ñu · Φ(u)
∣∣∣∞−x1β1

σ1

− [u · Φ(u) + ϕ(u)]
∣∣∣∞−x1β1

σ1

ô
= x2β2 + δ

1

1− Φ
Ä
−x1β1

σ1

ä ñ−ϕ(u)
∣∣∣∞−x1β1

σ1

ô
= x2β2 + δ

1

1− Φ
Ä
−x1β1

σ1

ä −ϕ (∞)︸ ︷︷ ︸
=0

+ϕ

Å−x1β1

σ1

ã
= x2β2 + δ

ϕ
Ä
−x1β1

σ1

ä
1− Φ

Ä
−x1β1

σ1

ä = x2β2 + δ
ϕ
Ä
x1β1

σ1

ä
Φ
Ä
x1β1

σ1

ä
︸ ︷︷ ︸
≡λ
Ä
x1β1
σ1

ä
Back to Heckit
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