TA Session 4: Duration Models

Microeconometrics with Joan Llull IDEA, Fall 2024

TA: Conghan Zheng

October 16, 2024

Overview

Duration Data

Duration Data

- *Duration data*: data on a variable that measures the length of time spent in a state before transition to another state
- TA4.dta: college dropouts data (single-record data, one obs. per individual)

	id	duration	event	sex	grade	part_time
1	1	41	0	1	2	0
2	2	8	1	Ø	4	1
3	3	41	0	1	3	Ø
4	4	4	1	1	4	1
5	5	47	0	Ø	1	Ø
6	6	44	0	1	2	Ø
7	7	39	0	1	1	Ø
8	8	4	1	Ø	5	Ø
9	9	21	1	Ø	1	Ø
10	10	41	0	1	4	0

- event: the event of interest, 1 = dropout, 0 = censored
- Empirical concern: the spell length may be incompletely observed (censored, individuals leave the study before the spell ends).

Duration Data

• Set the duration data structure based on variable duration. Commands begin with st (survival-time).

	stset	duration,	failure	(event=1)	id(id)
--	-------	-----------	---------	-----------	--------

id	duration	event	_t0	_t	_d	_st
1	41	0	0	41	0	1
2	8	1	0	8	1	1
3	41	0	0	41	0	1
4	4	1	0	4	1	1
5	47	0	0	47	0	1

• Variables newly generated by the command:

_t0: analysis time when record begins (the calendar time could be different for different individuals)

- _t: analysis time when record ends
- _d: 1 if failure, 0 if the spell is censored
- _st: 1 if the record is to be included in analysis; 0 otherwise

Continuous Duration vs. Discrete Duration

The key difference: grouping

- Continuously distributed durations
 - Time index is sill "discrete", you have natural numbers t = 1, 2, ..., not something like t = 1.4142.
 - Continuous means time is in its fairly precise unit, consecutively observed, not grouped.
- Discretely distributed durations: grouped data
 - When the measurements are in aggregated time intervals, it can be important to account for the discreteness in the estimation.
 - In grouped duration data, each duration is only known to fall into a certain time interval, such as a week, a month, or even a year.
 - Why we can't address this discreteness using the continuous duration model: explained later in section Discrete Duration.

Continuous Duration

Estimation Approaches

- **non-parametric**: letting the data speak for itself and making no assumption about the functional form of the survivor function, the effect of covariates are not modeled either.
- Semi-parametric: no parametric form of the survivor function is specified, yet the effect of the covariates is still assumed to take a certain form (to alter the baseline survivor function that for which all covariates are equal to zero). The Cox(1972) model is the most popular semiparametric model.
- **fully parametric**: analogous to a Tobit model with right-censoring, has the limitation of heavy reliance on distributional assumptions (in order for the parameter estimates to be consistent).

Censoring

- One important problem of survival data is that they are usually censored, as some spells are incompletely observed. In practice, data may be
 - right-censoring/censoring from above: we observe spells from time 0 until a censoring time c, the unknown end lies in (c, ∞) .
 - left-censoring/censoring from below: the spells are incomplete with an unknown end lies in (0, c). For example when we talk about unemployment spell, this individual ends unemployment before her entering the study.
 - interval censoring: the censored spell ends between two known time points $[t_1^*, t_2^*)$.
- The survival analysis literature has focused on right-censoring.

Assumption

- Each individual in the sample has a completed duration T_i^* and censoring time C_i^* . What we observe for each spell is the minimum of T_i^* and C_i^* .
- For standard survival analysis methods to be valid, the censoring mechanism needs to be one with **independent (noninformative) censoring**.
- This means that parameters of the distribution of C^* are not informative about the parameters of the distribution of the duration T^* .

Nonparametric Approach

Estimation of survival functions:

- Estimate the survivor or hazard function in the presence of independent censoring.
- On the second second

Key concepts of survival analysis

Function	Symbol	Definition	Relationship
Density	f(t)		$f(t) = \frac{dF(t)}{dt}$
Distribution	F(t)	$P(T \le t)$	$F(t) = \int_0^t f(s) ds$
Survivor	S(t)	P(T > t)	S(t) = 1 - F(t)
Hazard	h(t)	$\lim_{h \to 0} \frac{P(t \le T \le t + h T \ge t)}{h}$	$h(t) = \frac{f(t)}{S(t)}$
Cumulative hazard	H(t)	$H(t) = \int_0^t h(s) ds$	$H(t) = -\ln S(t)$

• For each t, h(t) is the instantaneous rate of leaving per unit of time.

$$h(t) = \lim_{\Delta \to 0} \frac{\mathbb{P}\left(t \le T \le t + \Delta | T \ge t\right)}{\Delta}$$

and for "small" Δ ,

 $\mathbb{P}\left(t\leq T\leq t+\Delta|T\geq t\right)\approx h(t)\cdot\Delta$

Thus, the hazard function can be used to approximate a conditional probability in much the same way that the height of the density of T can be used to approximate an unconditional probability.

The Kaplan-Meier Estimator

• Kaplan-Meier estimator or product limit estimator of the survivor function

$$\hat{S}(t) = \prod_{j \mid t_j \leq t} \frac{\texttt{\#Spells at } \texttt{risk}(t_j) - \texttt{\#Spells } \texttt{ending}(t_j)}{\texttt{\#Spells at } \texttt{risk}(t_j)}$$

Kaplan-Meier survivor function

Time	At risk	Fail	Net lost	Survivor function	Std. error	[95% cor	f. int.]
	265			A 0997	0.0055	0.0653	0.0063
2	265	10	0	0.9887	0.0005	0.9653	0.9963
3	252	8	0	0.9208	0.0166	0.8810	0.9476
4	244	7	0	0.8943	0.0189	0.8506	0.9258
5	237	3	0	0.8830	0.0197	0.8378	0.9162

- At risk: at school; Fail: dropped out; Net Lost: censored
- Example:

The probability of survival beyond t = 1 is $\frac{262}{265} \approx 0.9887$. The probability of survival beyond t = 2 is $\frac{262}{265} \times \frac{252}{262} = \frac{252}{265} \approx 0.9509$.

The Kaplan-Meier Estimator

The Kaplan-Meier Estimator

• Kernel smoothing: the weighted (kernel) average of neighboring observations

• To estimate the role of individual observed heterogeneity while controlling for duration dependence, we consider the **Cox proportional hazards** regression model (Cox, 1972):

$$h(t|x) = \underbrace{h_0(t)}_{\text{baseline hazard}} \cdot \underbrace{e^{x\beta}}_{\text{relative hazard}}$$

- The Cox model is semiparametric in the sense that $h_0(t)$ is estimated non-parametrically, and the scale up part $e^{x\beta}$ is assumed to be depending on regressors.
- The Cox model has no intercept since

$$h_0(t)e^{\beta_0+x\beta} = \underbrace{h_0(t)e^{\beta_0}}_{\text{new baseline hazard}} e^{x\beta}$$

Any intercept along with the regressors is not identified, since any value works as well as any other.

Partial Likelihood Estimation

$$h(t|x) = h_0(t) \cdot e^{x\beta}$$

- Partial likelihood estimation (Cox, 1972, 1975)
 - For now, we consider only time-invariant regressors, but later we will relax this assumption.
 - "Partial": we estimate β without estimating $h_0(t)$.
 - Partial likelihood minimization $\rightarrow \hat{\beta}$
 - Nonparametric KM estimation $\rightarrow \hat{h}_0(t)$

- Effects of regressors on the time until college dropout: the $\beta {\rm s}$ from $e^{x\beta}$
 - . stcox \$x, nohr

Cox regression with Breslow method for ties

No. of subjects = 265	Number of obs	= 265
No. of failures = 107		
Time at risk = 8,087		
	LR chi2(6)	= 62.85
Log likelihood = -535.6177	Prob > chi2	= 0.0000

t	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
female	.1059617	.2040423	0.52	0.604	2939538	.5058771
grade	.2892697	.087417	3.31	0.001	.1179355	.460604
part_time	1.210182	.2788914	4.34	0.000	.6635652	1.756799
lag	0138323	.0083869	-1.65	0.099	0302703	.0026057
stm	.1056626	.0201591	5.24	0.000	.0661515	.1451738
married	.9950366	.2631813	3.78	0.000	.4792107	1.510863

• The magnitude of these effects is not immediately clear. Why?

The Cox Proportional Hazards Model Effect Size

• If the jth regressor in $x = (x_1, x_2, ..., x_k)$ is increased by 1 unit,

$$h(t|x + \Delta) = h_0(t)e^{\beta_1 x_1 + \dots + \beta_j(x_j + 1) + \dots + \beta_k x_k} = h_0(t)e^{x\beta + \beta_j} = e^{\beta_j}h(t|x)$$

• Therefore, changes in regressors can be interpreted as having a multiplicative effect on the original hazard (semi-elasticity), as

$$\frac{\partial h(t|x)}{\partial x_j} = h_0(t) \frac{\partial e^{x\beta}}{\partial x_j} = h_0(t) e^{x\beta} \beta_j = h(t|x) \beta_j$$

• The coefficients:

ł

- $\beta_{\text{female}} \approx 0.106 > 0$, harzard rate is higher for female students;
- $\beta_{\text{grade}} \approx 0.289 > 0$, harzard rate is higher for college students with worse high school performance (high grade).

• The effect size:

- hazard ratio for time-invariant variable female is $e^{0.106} \approx 1.112$;
- A one unit increase in grade (high school grades before college, the lower the better) leads to the hazard rate being $e^{0.289}\approx 1.335$ times higher.

The Cox Proportional Hazards Model Baseline

• Concern: the baseline

$$\Rightarrow h(t|x=0) = h_0(t) \cdot e^{\beta_1 \cdot 0 + \dots + \beta_k \cdot 0 + 0}$$
$$= h_0(t) \cdot e^0 = h_0(t)$$

- Problem: our $x = (female,grade,part_time,lag,stm,married)$, variable stm never goes to zero in our sample, min(stm) = 6
- Solution: recenter the variable
 - . generate stm6 = stm 6
 - . stcox \$x stm6, shared(grade)
- Now the baseline survivor estimate (S_0) corresponds to a male full-time student, not married and stm = 6.

• The cumulative hazard:

$$H(t|x) = \int_0^t h(s|x)ds = \int_0^t e^{x\beta} \cdot h_0(s)ds = e^{x\beta} \int_0^t h_0(s)ds = e^{x\beta} \cdot H_0(t)$$

• After including one binary regressor (part-time student) whose estimate is $\beta_1 \approx 1.210$, we have $H(t|x=1) \approx e^{1.210} H_0(t) \approx 3.353 H_0(t)$.

• The survival function:

$$S(t|x) = e^{-H(t|x)} = e^{-e^{x\beta}H_0(t)} = \left[e^{-H_0(t)}\right]^{e^{x\beta}} = S_0(t)^{e^{x\beta}}$$

• Part-time students (S_1) survive much worse: $S(t|x=1) \approx S_0(t)^{e^{1.210}} \approx S_0(t)^{3.353}$, higher power $e^{x\beta}$ makes S(t|x) more convex.

• Hazards:

$$h(t|x=1) = h_0(t) \cdot e^{1.210} = h_0(t) \cdot 3.353$$

• The hazards are indeed proportional, and if graphed on a log scale they would be parallel.

The Cox Proportional Hazards Model Model Diagnostics

O PH implies proportional integrated hazards:

$$H(t|x) = \int_0^t h(s|x) ds = e^{x\beta} \int_0^t h_0(s) ds = H_0(t) e^{x\beta}$$
$$\Rightarrow \ln H(t|x) = \ln H_0(t) + x\beta$$

Therefore under PH, the log-integrated hazard curves $\ln H(t|x)$ (the *log-log survivor curves*), should be parallel at different values of the time invariant regressors x (as there is no t in $x\beta$) \rightarrow a graphical test on PH

Model Diagnostics

O The predicted survivor function from Cox regression and the (nonregression) Kaplan-Meier estimate (observed) of the survivor function should be similar if PH is appropriate. → another graphical test on PH

The PH model is reasonable for female but does not do so well for ${\tt part_time}.$

Model Diagnostics

• A formal residual-based statistical test on the key assumption of the Cox model: separable components, duration part $h_0(t)$ and regressors part $e^{x\beta}$.

Under the standard PH assumption, there should be no time (duration/spell length) trend in the regressors part. Rejection of the null (no time trend / zero slope) indicates a deviation from the proportional-hazards assumption.

Test of proportional-hazards assumption

	rho	chi2	df	Prob>chi2
female	0.03383	0.12	1	0.7254
grade	0.00149	0.00	1	0.9869
part_time	-0.04947	0.30	1	0.5813
lag	-0.08136	0.71	1	0.3997
stm	0.04949	0.32	1	0.5727
married	-0.05574	0.33	1	0.5647
Global test		1.54	6	0.9568

Time function: Analysis time

Stratified Cox Model

- If some variable does not fulfill the PH assumption, we can use it as a strata (group) variable.
- In the stratified Cox model, we relax the assumption that everyone faces the same baseline hazard.
- The baseline hazards are allowed to differ by group, while the coefficients β are constrained to be the same across groups. Ex: $h_g(t|x) = h_{0g}(t)e^{x\beta}$, where g indicates the gender groups.

• The cost of this model is that the effect of female is not identified.

Time-Varying Covariates Extended Cox Model

- There are cases that require time-varying covariates: e.g., when one is repeatedly unemployed, the macroeconomic conditions change.
- Extended Cox model:

$$h(t|x) = h_0(t)e^{x_t\beta}$$

• For two individuals i and j,

$$\frac{h(t|x_{it})}{h(t|x_{jt})} = \frac{h_0(t)e^{x_{it}\beta}}{h_0(t)e^{x_{jt}\beta}} = e^{(x_{it}-x_{jt})\beta}$$

This hazard ratio between two individuals is a function of t, the PH assumption no longer holds.

• Estimation: in the likelihood, x_i is replaced by $x_i(t_j)$...

Parametric Models

• Proportional hazard specification: $h(t|x) = h_0(t)e^{x\beta} \rightarrow$ flexible hazard functions

Semi-parametric model:

Cox PH:
$$h(t|x) = \underbrace{h_0(t)}_{\text{unparameterized}} e^{x\beta}$$

Parametric models:

 $\begin{array}{ll} \text{Weibull:} \quad h(t|x) = h_0(t,\alpha,\gamma) \cdot e^{x\beta} = \alpha t^{\alpha-1} e^{\gamma} \cdot e^{x\beta} \quad \rightarrow (\alpha,\gamma,\beta) \\ \text{Exponential:} \quad h(t|x) = h_0(t,\alpha) \cdot e^{x\beta} = e^{\alpha} \cdot e^{x\beta} \rightarrow \ (\alpha,\beta) \end{array}$

Notice that there is no constant term in vector x.

• The estimates from the parametric PH model should be roughly similar to that from the Cox model. Otherwise there is evidence of a misparameterized underlying baseline hazard.

Parametric Models Comparison

-	(1)	(2)	(3)	(4)	(5)
	Cox	Exponen~l	Weibull	Loglogit	Lognormal
main					
female	0.106	0.141	0.139	-0.155	-0.148
	(0.202)	(0.213)	(0.209)	(0.238)	(0.240)
grade	0.289***	0.300***	0.293**	-0.315***	-0.308**
	(0.0846)	(0.0911)	(0.0896)	(0.0942)	(0.0953)
part_time	1.210***	1.323***	1.289***	-1.524***	-1.555***
	(0.268)	(0.287)	(0.278)	(0.364)	(0.341)
lag	-0.0138	-0.0152	-0.0147	0.0105	0.00809
-	(0.00981)	(0.0103)	(0.0102)	(0.0125)	(0.0117)
stm	0.106***	0.108***	0.102***	-0.106***	-0.104***
	(0.0205)	(0.0173)	(0.0178)	(0.0208)	(0.0198)
married	0.995***	1.050***	1.030***	-1.263***	-1.247***
	(0.267)	(0.294)	(0.289)	(0.300)	(0.315)
_cons		-6.231***	-5.914***	5.973***	6.007***
		(0.307)	(0.422)	(0.362)	(0.367)
11	-535.6	-290.0	-289.6	-287.5	-286.5
aic	1083.2	593.9	595.2	591.1	589.0
bic	1104.7	619.0	623.8	619.7	617.6
N	265	265	265	265	265

Standard errors in parentheses

* p<0.05, ** p<0.01, *** p<0.001

- Better model fit but counterintuitive signs of coef. for some models?
- Can be more precise on coef.; Low robustness to distribution misspecification.

Hazards from Various Models

Figure 1: Hazard rates from various models, evaluated at the mean of the regressors

 Exponential: constant hazard; Weibull: monotonic hazard; Loglogistic and Lognormal: inverted U-shaped hazard; Cox PH: flexible hazard.

Unobserved Heterogeneity

 In duration analysis, the unobserved heterogeneity will lead to inconsistent estimates even if it's not correlated with the explanatory variables¹. Consider for example that there are groups of unemployed people that differ by the unobserved skill level, which will affect their hazard function.

$$h_i(t) = h_0(t)\alpha_i e^{x_i\beta}, \ \alpha_i > 0$$
$$= h_0(t)e^{x_i\beta+\nu_i}, \ \nu_i = \ln \alpha_i$$

The unobserved heterogeneity enters the hazard function multiplicatively: α_i (which can also be extended to a group-level effect α_g). The log effect ν_i is analogous to random effects² in panel data.

¹Unlike in linear models, where the estimates will be consistent if the unobserved heterogeneity is not correlated with the regressors.

²The effects α_i are assumed to be random and follow a predefined distribution.

Unobserved Heterogeneity

```
. streg, dist(weibull) frailty(invgau) vce(robust) nolog nohr ^{\rm 3}
```

Weibull PH regression Inverse-Gaussian frailty

lo. of subjects = 265	Number of obs = 26	5
lo. of failures = 107		
ime at risk = 8,087		
	Wald chi2(0) =	
.og pseudolikelihood = -318.11508	Prob > chi2 =	

(Std. err. adjusted for 265 clusters in id)

		Robust				
t	Coefficient	std. err.	z	P> z	[95% conf.	interval]
_cons	-3.906223	.2703001	-14.45	0.000	-4.436002	-3.376445
/ln_p	.2467046	.0768851	3.21	0.001	.0960125	.3973967
/lntheta	2.575637	.2272414	11.33	0.000	2.130253	3.021022
р	1.279801	.0983977			1.100773	1.487946
1/p	.7813715	.0600759			.6720673	.9084527
theta	13.13969	2.985881			8.416992	20.51225

• The log likelihood increases from -535.6177 (the Cox PH with 6 regressors) to -318.1151.

 $^{^3\}mbox{You}$ can check the code TA4.do for an example of Cox PH with Gamma-distributed random effects.

Unobserved Heterogeneity

Discrete Duration

Discrete-time hazards

• The T periods indexed by t = 1, ..., T are grouped into A intervals indexed by a = 1, ..., A, unequally spaced intervals are allowed.

$$h(t_a|x) = \mathbb{P}(t_{a-1} \le T < t_a|T \ge t_{a-1}, x(t_{a-1}))$$

- Why discrete durations is a problem: we need to consider three indexes i, t, a in the derivation.
 - PH model of continuous durations:

$$h(t|x) = h_0(t)e^{x\beta}$$

• PH model of discrete durations associated with the continuous model:

$$h(t|x) = h_0(t)e^{x(t_{a-1})\beta}$$

The regressors are constant within the interval (a) but can vary across intervals, and $h_0(t)$ can vary within the interval (a).

Discrete-time hazards

• Two solutions:

- **(**) Use index a, group $h_0(t)$ (more common)
 - Consider a binary choice model for transitions:

 $d = \begin{cases} 1, & \text{ if the spell ends} \\ 0, & \text{ otherwise} \end{cases}$

• And we fit a simple (stacked) Logit model on it:

 $\mathbb{P}(t_{a-1} \le T < t_a | T \ge t_{a-1}, x) = F(h_a + x(t_{a-1})\beta)$

where β is restricted to be constant over time, and the intercept h_a is allowed to vary across intervals.

- **2** Use index *t*, add group indicators for each *a* (dummies for each interval *a* are included as regressors)
 - Complementary log-log: equivalent to a Cox PH, also called a grouped Cox PH.

Discrete-time hazards

	(1)	(2)
	logit	cloglog
у		
female	-0.351	-0.335
	(0.213)	(0.192)
grade	-0.0559	-0.0543
	(0.136)	(0.134)
part_time	1.137***	1.091***
	(0.292)	(0.252)
stm	-0.321***	-0.328***
	(0.0684)	(0.0641)
married	1.027***	1.000***
	(0.248)	(0.263)
11	-587.2	-588.3
aic	1212.5	1214.6
bic	1345.4	1347.5
N	8085	8085

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001</pre>

Appendix

References

- Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: methods and applications. Cambridge university press. Chapter 17.
- Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press. Chapter 22.
- Cameron, A. C., & Trivedi, P. K. (2022). Microeconometrics using stata (Second Edition). Stata press. Chapter 21.
- Cleves, M., Gould, W., Gould, W. W., Gutierrez, R., & Marchenko, Y. (2010). An introduction to survival analysis using Stata. Stata press.