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Duration Data

Duration Data

Duration data: data on a variable that measures the length of time spent in a
state before transition to another state
TA4.dta: college dropouts data (single-record data, one obs. per individual)

event: the event of interest, 1 = dropout, 0 = censored
Empirical concern: the spell length may be incompletely observed (censored,
individuals leave the study before the spell ends).
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Duration Data

Duration Data

Set the duration data structure based on variable duration. Commands
begin with st (survival-time).
. stset duration, failure(event=1) id(id)

Variables newly generated by the command:
_t0: analysis time when record begins (the calendar time could be different
for different individuals)
_t: analysis time when record ends
_d: 1 if failure, 0 if the spell is censored
_st: 1 if the record is to be included in analysis; 0 otherwise
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Duration Data

Continuous Duration vs. Discrete Duration

The key difference: grouping
Continuously distributed durations

Time index is sill “discrete”, you have natural numbers t = 1, 2, ..., not
something like t = 1.4142.
Continuous means time is in its fairly precise unit, consecutively observed, not
grouped.

Discretely distributed durations: grouped data
When the measurements are in aggregated time intervals, it can be important
to account for the discreteness in the estimation.
In grouped duration data, each duration is only known to fall into a certain
time interval, such as a week, a month, or even a year.
Why we can’t address this discreteness using the continuous duration model:
explained later in section Discrete Duration.
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Continuous Duration

Estimation Approaches

1 non-parametric: letting the data speak for itself and making no assumption
about the functional form of the survivor function, the effect of covariates are
not modeled either.

2 semi-parametric: no parametric form of the survivor function is specified,
yet the effect of the covariates is still assumed to take a certain form (to alter
the baseline survivor function that for which all covariates are equal to zero).
The Cox(1972) model is the most popular semiparametric model.

3 fully parametric: analogous to a Tobit model with right-censoring, has the
limitation of heavy reliance on distributional assumptions (in order for the
parameter estimates to be consistent).
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Continuous Duration

Censoring

One important problem of survival data is that they are usually censored, as
some spells are incompletely observed. In practice, data may be

right-censoring/censoring from above: we observe spells from time 0 until a
censoring time c, the unknown end lies in (c,∞).
left-censoring/censoring from below: the spells are incomplete with an
unknown end lies in (0, c). For example when we talk about unemployment
spell, this individual ends unemployment before her entering the study.
interval censoring: the censored spell ends between two known time points
[t∗1, t

∗
2).

The survival analysis literature has focused on right-censoring.
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Continuous Duration Nonparametric Approach

Assumption

Each individual in the sample has a completed duration T ∗
i and censoring

time C∗
i . What we observe for each spell is the minimum of T ∗

i and C∗
i .

For standard survival analysis methods to be valid, the censoring mechanism
needs to be one with independent (noninformative) censoring.
This means that parameters of the distribution of C∗ are not informative
about the parameters of the distribution of the duration T ∗.
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Continuous Duration Nonparametric Approach

Nonparametric Approach

Estimation of survival functions:
1 Estimate the survivor or hazard function in the presence of independent

censoring.
2 No regressors are included.
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Continuous Duration Nonparametric Approach

Key concepts of survival analysis

Function Symbol Definition Relationship

Density f(t) f(t) = dF (t)
dt

Distribution F (t) P (T ≤ t) F (t) =
∫ t

0
f(s)ds

Survivor S(t) P (T > t) S(t) = 1− F (t)

Hazard h(t) limh→0
P (t≤T≤t+h|T≥t)

h h(t) = f(t)
S(t)

Cumulative hazard H(t) H(t) =
∫ t

0
h(s)ds H(t) = − lnS(t)

For each t, h(t) is the instantaneous rate of leaving per unit of time.

h(t) = lim
∆→0

P (t ≤ T ≤ t+∆|T ≥ t)

∆

and for “small” ∆,

P (t ≤ T ≤ t+∆|T ≥ t) ≈ h(t) ·∆

Thus, the hazard function can be used to approximate a conditional
probability in much the same way that the height of the density of T can be
used to approximate an unconditional probability.
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Continuous Duration Nonparametric Approach

The Kaplan-Meier Estimator

Kaplan–Meier estimator or product limit estimator of the survivor function

Ŝ(t) =
∏

j|tj≤t

#Spells at risk(tj)− #Spells ending(tj)
#Spells at risk(tj)

At risk: at school; Fail: dropped out; Net Lost: censored
Example:
The probability of survival beyond t = 1 is 262

265 ≈ 0.9887.
The probability of survival beyond t = 2 is 262

265 × 252
262 = 252

265 ≈ 0.9509.
...
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Continuous Duration Nonparametric Approach

The Kaplan-Meier Estimator
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Continuous Duration Nonparametric Approach

The Kaplan-Meier Estimator

Kernel smoothing: the weighted (kernel) average of neighboring observations
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model

To estimate the role of individual observed heterogeneity while controlling for
duration dependence, we consider the Cox proportional hazards regression
model (Cox, 1972):

h(t|x) = h0(t)︸ ︷︷ ︸
baseline hazard

· exβ︸︷︷︸
relative hazard

The Cox model is semiparametric in the sense that h0(t) is estimated
non-parametrically, and the scale up part exβ is assumed to be depending on
regressors.
The Cox model has no intercept since

h0(t)e
β0+xβ = h0(t)e

β0︸ ︷︷ ︸
new baseline hazard

exβ

Any intercept along with the regressors is not identified, since any value
works as well as any other.
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model
Partial Likelihood Estimation

h(t|x) = h0(t) · exβ

Partial likelihood estimation (Cox, 1972, 1975)
For now, we consider only time-invariant regressors, but later we will relax this
assumption.
“Partial”: we estimate β without estimating h0(t).
Partial likelihood minimization → β̂
Nonparametric KM estimation → ĥ0(t)
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model

Effects of regressors on the time until college dropout: the βs from exβ

. stcox $x, nohr

The magnitude of these effects is not immediately clear. Why?
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model
Effect Size

If the jth regressor in x = (x1, x2, ..., xk) is increased by 1 unit,

h(t|x+∆) = h0(t)e
β1x1+...+βj(xj+1)+...+βkxk = h0(t)e

xβ+βj = eβjh(t|x)

Therefore, changes in regressors can be interpreted as having a multiplicative
effect on the original hazard (semi-elasticity), as

∂h(t|x)
∂xj

= h0(t)
∂exβ

∂xj
= h0(t)e

xββj = h(t|x)βj

The coefficients:
βfemale ≈ 0.106 > 0, harzard rate is higher for female students;
βgrade ≈ 0.289 > 0, harzard rate is higher for college students with worse high
school performance (high grade).

The effect size:
hazard ratio for time-invariant variable female is e0.106 ≈ 1.112;
A one unit increase in grade (high school grades before college, the lower the
better) leads to the hazard rate being e0.289 ≈ 1.335 times higher.
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model
Baseline

Concern: the baseline

⇒ h (t|x = 0) = h0(t) · eβ1·0+···+βk·0+0

= h0(t) · e0 = h0(t)

Problem: our x = (female,grade,part_time,lag,stm,married), variable
stm never goes to zero in our sample, min(stm) = 6

Solution: recenter the variable
. generate stm6 = stm - 6

. stcox $x stm6, shared(grade)

Now the baseline survivor estimate (S0) corresponds to a male full-time
student, not married and stm = 6.
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model

The cumulative hazard:

H(t|x) =
∫ t

0

h(s|x)ds =
∫ t

0

exβ · h0(s)ds = exβ
∫ t

0

h0(s)ds = exβ ·H0(t)

After including one binary regressor (part-time student) whose estimate is
β1 ≈ 1.210, we have H(t|x = 1) ≈ e1.210H0(t) ≈ 3.353H0(t).
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model

The survival function:

S(t|x) = e−H(t|x) = e−exβH0(t) =
î
e−H0(t)

óexβ

= S0(t)
exβ

Part-time students (S1) survive much worse:
S(t|x = 1) ≈ S0(t)

e1.210 ≈ S0(t)
3.353, higher power exβ makes S(t|x) more

convex. 18 / 33



Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model

Hazards:

h(t|x = 1) = h0(t) · e1.210 = h0(t) · 3.353

The hazards are indeed proportional, and if graphed on a log scale they would
be parallel.
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model
Model Diagnostics

1 PH implies proportional integrated hazards:

H(t|x) =
∫ t

0

h(s|x)ds = exβ
∫ t

0

h0(s)ds = H0(t)e
xβ

⇒ lnH(t|x) = lnH0(t) + xβ

Therefore under PH, the log-integrated hazard curves lnH(t|x) (the log-log
survivor curves), should be parallel at different values of the time invariant
regressors x (as there is no t in xβ) → a graphical test on PH

eβfemale ≈ 1.112 eβpart_time ≈ 3.353 20 / 33



Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model
Model Diagnostics

2 The predicted survivor function from Cox regression and the (nonregression)
Kaplan-Meier estimate (observed) of the survivor function should be similar if
PH is appropriate. → another graphical test on PH

female part_time

The PH model is reasonable for female but does not do so well for
part_time.
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Continuous Duration Semiparametric Approach

The Cox Proportional Hazards Model
Model Diagnostics

3 A formal residual-based statistical test on the key assumption of the Cox
model: separable components, duration part h0(t) and regressors part exβ .
Under the standard PH assumption, there should be no time (duration/spell
length) trend in the regressors part. Rejection of the null (no time trend /
zero slope) indicates a deviation from the proportional-hazards assumption.
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Continuous Duration Semiparametric Approach

Stratified Cox Model

If some variable does not fulfill the PH assumption, we can use it as a strata
(group) variable.
In the stratified Cox model, we relax the assumption that everyone faces the
same baseline hazard.
The baseline hazards are allowed to differ by group, while the coefficients β
are constrained to be the same across groups. Ex: hg(t|x) = h0g(t)e

xβ ,
where g indicates the gender groups.

The cost of this model is that the effect of female is not identified.
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Continuous Duration Semiparametric Approach

Time-Varying Covariates
Extended Cox Model

There are cases that require time-varying covariates: e.g., when one is
repeatedly unemployed, the macroeconomic conditions change.
Extended Cox model:

h(t|x) = h0(t)e
xtβ

For two individuals i and j,

h(t|xit)

h(t|xjt)
=

h0(t)e
xitβ

h0(t)exjtβ
= e(xit−xjt)β

This hazard ratio between two individuals is a function of t, the PH
assumption no longer holds.
Estimation: in the likelihood, xi is replaced by xi(tj) ...
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Continuous Duration Parametric Approach

Parametric Models

Proportional hazard specification: h(t|x) = h0(t)e
xβ → flexible hazard

functions

Semi-parametric model:

Cox PH: h(t|x) = h0(t)︸ ︷︷ ︸
unparameterized

exβ

Parametric models:

Weibull: h(t|x) = h0(t, α, γ) · exβ = αtα−1eγ · exβ → (α, γ, β)

Exponential: h(t|x) = h0(t, α) · exβ = eα · exβ → (α, β)

Notice that there is no constant term in vector x.
The estimates from the parametric PH model should be roughly similar to
that from the Cox model. Otherwise there is evidence of a misparameterized
underlying baseline hazard.
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Continuous Duration Parametric Approach

Parametric Models Comparison

Better model fit but counterintuitive signs of coef. for some models?
Can be more precise on coef.; Low robustness to distribution misspecification.
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Continuous Duration Parametric Approach

Hazards from Various Models

Figure 1: Hazard rates from various models, evaluated at the mean of the regressors

Exponential: constant hazard; Weibull: monotonic hazard; Loglogistic and
Lognormal: inverted U-shaped hazard; Cox PH: flexible hazard. 27 / 33



Continuous Duration Parametric Approach

Unobserved Heterogeneity

In duration analysis, the unobserved heterogeneity will lead to inconsistent
estimates even if it’s not correlated with the explanatory variables1. Consider
for example that there are groups of unemployed people that differ by the
unobserved skill level, which will affect their hazard function.

hi(t) = h0(t)αie
xiβ , αi > 0

= h0(t)e
xiβ+νi , νi = lnαi

The unobserved heterogeneity enters the hazard function multiplicatively: αi

(which can also be extended to a group-level effect αg). The log effect νi is
analogous to random effects2 in panel data.

1Unlike in linear models, where the estimates will be consistent if the unobserved
heterogeneity is not correlated with the regressors.

2The effects αi are assumed to be random and follow a predefined distribution.
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Continuous Duration Parametric Approach

Unobserved Heterogeneity

. streg, dist(weibull) frailty(invgau) vce(robust) nolog
nohr 3

The log likelihood increases from -535.6177 (the Cox PH with 6 regressors)
to -318.1151.

3You can check the code TA4.do for an example of Cox PH with Gamma-distributed random
effects.
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Continuous Duration Parametric Approach

Unobserved Heterogeneity

Weibull Hazard
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Discrete Duration

Discrete-time hazards

The T periods indexed by t = 1, . . . , T are grouped into A intervals indexed
by a = 1, . . . , A, unequally spaced intervals are allowed.

h(ta|x) = P(ta−1 ≤ T < ta|T ≥ ta−1, x(ta−1))

Why discrete durations is a problem: we need to consider three indexes i, t, a
in the derivation.

PH model of continuous durations:

h(t|x) = h0(t)e
xβ

PH model of discrete durations associated with the continuous model:

h(t|x) = h0(t)e
x(ta−1)β

The regressors are constant within the interval (a) but can vary across
intervals, and h0(t) can vary within the interval (a).
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Discrete Duration

Discrete-time hazards

Two solutions:
1 Use index a, group h0(t) (more common)

Consider a binary choice model for transitions:

d =

ß
1, if the spell ends
0, otherwise

And we fit a simple (stacked) Logit model on it:

P(ta−1 ≤ T < ta|T ≥ ta−1, x) = F (ha + x(ta−1)β)

where β is restricted to be constant over time, and the intercept ha is allowed
to vary across intervals.

2 Use index t, add group indicators for each a (dummies for each interval a are
included as regressors)

Complementary log-log: equivalent to a Cox PH, also called a grouped Cox PH.
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Discrete Duration

Discrete-time hazards
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