TA Session 4: Duration Models Microeconometrics with Joan Llull IDEA, Fall 2024

TA: Conghan Zheng

October 16, 2024

[Duration Data](#page-2-0)

Duration Data

- *Duration data*: data on a variable that measures the length of time spent in a state before transition to another state
- TA4.dta: college dropouts data (single-record data, one obs. per individual)

- event: the event of interest, $1 =$ dropout, $0 =$ censored
- Empirical concern: the spell length may be incompletely observed (censored, individuals leave the study before the spell ends).

Duration Data

Set the duration data structure based on variable duration. Commands begin with st (survival-time).

• Variables newly generated by the command:

_t0: analysis time when record begins (the calendar time could be different for different individuals)

- _t: analysis time when record ends
- _d: 1 if failure, 0 if the spell is censored
- _st: 1 if the record is to be included in analysis; 0 otherwise

Continuous Duration vs. Discrete Duration

The key difference: grouping

- **Continuously distributed durations**
	- Time index is sill "discrete", you have natural numbers $t = 1, 2, ...,$ not something like $t = 1.4142$.
	- Continuous means time is in its fairly precise unit, consecutively observed, not grouped.
- Discretely distributed durations: grouped data
	- When the measurements are in aggregated time intervals, it can be important to account for the discreteness in the estimation.
	- In grouped duration data, each duration is only known to fall into a certain time interval, such as a week, a month, or even a year.
	- Why we can't address this discreteness using the continuous duration model: explained later in section Discrete Duration.

[Continuous Duration](#page-6-0)

Estimation Approaches

- **1** non-parametric: letting the data speak for itself and making no assumption about the functional form of the survivor function, the effect of covariates are not modeled either.
- **2** semi-parametric: no parametric form of the survivor function is specified, yet the effect of the covariates is still assumed to take a certain form (to alter the baseline survivor function that for which all covariates are equal to zero). The Cox(1972) model is the most popular semiparametric model.
- **3 fully parametric**: analogous to a Tobit model with right-censoring, has the limitation of heavy reliance on distributional assumptions (in order for the parameter estimates to be consistent).

Censoring

- One important problem of survival data is that they are usually censored, as some spells are incompletely observed. In practice, data may be
	- right-censoring/censoring from above: we observe spells from time 0 until a censoring time c, the unknown end lies in (c, ∞) .
	- left-censoring/censoring from below: the spells are incomplete with an unknown end lies in $(0, c)$. For example when we talk about unemployment spell, this individual ends unemployment before her entering the study.
	- interval censoring: the censored spell ends between two known time points $[t_1^*, t_2^*]$.
- The survival analysis literature has focused on right-censoring.

Assumption

- Each individual in the sample has a completed duration T_i^\ast and censoring time C_i^* . What we observe for each spell is the minimum of T_i^* and C_i^* .
- For standard survival analysis methods to be valid, the censoring mechanism needs to be one with independent (noninformative) censoring.
- This means that parameters of the distribution of C^* are not informative about the parameters of the distribution of the duration $T^*.$

Nonparametric Approach

Estimation of survival functions:

- **E** Estimate the survivor or hazard function in the presence of independent censoring.
- ² No regressors are included.

Key concepts of survival analysis

Function	Symbol	Definition	Relationship
Density	f(t)		$f(t) = \frac{dF(t)}{dt}$
Distribution	F(t)	$P(T \leq t)$	$F(t) = \int_0^t \ddot{f}(s) ds$
Survivor	S(t)	P(T > t)	$S(t) = 1 - F(t)$
Hazard	h(t)	$\lim_{h\to 0} \frac{P(t\leq T\leq \hat{t}+h T\geq t)}{h}$	$h(t) = \frac{f(t)}{S(t)}$
Cumulative hazard	H(t)	$H(t) = \int_0^t h(s)ds$	$H(t) = -\ln S(t)$

• For each t, $h(t)$ is the instantaneous rate of leaving per unit of time.

$$
h(t) = \lim_{\Delta \to 0} \frac{\mathbb{P}(t \le T \le t + \Delta | T \ge t)}{\Delta}
$$

and for "small" Δ .

 $\mathbb{P} (t \leq T \leq t + \Delta | T \geq t) \approx h(t) \cdot \Delta$

Thus, the hazard function can be used to approximate a conditional probability in much the same way that the height of the density of T can be used to approximate an unconditional probability.

The Kaplan-Meier Estimator

Kaplan–Meier estimator or product limit estimator of the survivor function

$$
\hat{S}(t) = \prod_{j|t_j \leq t} \frac{\text{\#Spells at risk}(t_j) - \text{\#Spells ending}(t_j)}{\text{\#Spells at risk}(t_j)}
$$

Kaplan-Meier survivor function

- At risk: at school; Fail: dropped out; Net Lost: censored
- Example:

...

The probability of survival beyond $t=1$ is $\frac{262}{265} \approx 0.9887$. The probability of survival beyond $t=2$ is $\frac{262}{265} \times \frac{252}{262} = \frac{252}{265} \approx 0.9509$.

The Kaplan-Meier Estimator

The Kaplan-Meier Estimator

• Kernel smoothing: the weighted (kernel) average of neighboring observations

To estimate the role of individual observed heterogeneity while controlling for duration dependence, we consider the Cox proportional hazards regression model (Cox, 1972):

$$
h(t|x) = \underbrace{h_0(t)}_{\text{baseline hazard}} \cdot \underbrace{e^{x\beta}}_{\text{relative hazard}}
$$

- The Cox model is semiparametric in the sense that $h_0(t)$ is estimated non-parametrically, and the scale up part $e^{x\beta}$ is assumed to be depending on regressors.
- The Cox model has no intercept since

$$
h_0(t)e^{\beta_0+x\beta}=\underbrace{h_0(t)e^{\beta_0}}_{\text{new baseline hazard}}e^{x\beta}
$$

Any intercept along with the regressors is not identified, since any value works as well as any other.

Partial Likelihood Estimation

$$
h(t|x) = h_0(t) \cdot e^{x\beta}
$$

- Partial likelihood estimation (Cox, 1972, 1975)
	- For now, we consider only time-invariant regressors, but later we will relax this assumption.
	- "Partial": we estimate β without estimating $h_0(t)$.
	- \bullet Partial likelihood minimization $\to \hat{\beta}$
	- Nonparametric KM estimation $\rightarrow h_0(t)$

- Effects of regressors on the time until college dropout: the β s from $e^{x\beta}$
	- . stcox \$x, nohr

Cox regression with Breslow method for ties

• The magnitude of these effects is not immediately clear. Why?

The Cox Proportional Hazards Model Effect Size

If the jth regressor in $x = (x_1, x_2, ..., x_k)$ is increased by 1 unit,

$$
h(t|x + \Delta) = h_0(t)e^{\beta_1 x_1 + \dots + \beta_j (x_j + 1) + \dots + \beta_k x_k} = h_0(t)e^{x\beta + \beta_j} = e^{\beta_j}h(t|x)
$$

Therefore, changes in regressors can be interpreted as having a multiplicative effect on the original hazard (semi-elasticity), as

$$
\frac{\partial h(t|x)}{\partial x_j} = h_0(t) \frac{\partial e^{x\beta}}{\partial x_j} = h_0(t) e^{x\beta} \beta_j = h(t|x) \beta_j
$$

- **o** The coefficients:
	- $\beta_{\text{female}} \approx 0.106 > 0$, harzard rate is higher for female students;
	- $\phi \beta_{\text{grade}} \approx 0.289 > 0$, *harzard rate* is higher for college students with worse high school performance (high grade).

a The effect size:

- *hazard ratio* for time-invariant variable female is $e^{0.106} \approx 1.112$;
- A one unit increase in grade (high school grades before college, the lower the better) leads to the hazard rate being $e^{0.289} \approx 1.335$ times higher.

Baseline

• Concern: the baseline

$$
\Rightarrow h(t|x=0) = h_0(t) \cdot e^{\beta_1 \cdot 0 + \dots + \beta_k \cdot 0 + 0}
$$

$$
= h_0(t) \cdot e^0 = h_0(t)
$$

- Problem: our $x =$ (female, grade, part_time, lag, stm, married), variable stm never goes to zero in our sample, $min(\texttt{stm}) = 6$
- Solution: recenter the variable
	- . generate $stm =$ $stm 6$
	- stcox $x \sin 6$, shared(grade)
- Now the baseline survivor estimate (S_0) corresponds to a male full-time student, not married and $stm = 6$.

The cumulative hazard:

$$
H(t|x) = \int_0^t h(s|x)ds = \int_0^t e^{x\beta} \cdot h_0(s)ds = e^{x\beta} \int_0^t h_0(s)ds = e^{x\beta} \cdot H_0(t)
$$

After including one binary regressor (part-time student) whose estimate is $\beta_1 \approx 1.210$, we have $H(t|x=1) \approx e^{1.210} H_0(t) \approx 3.353 H_0(t)$.

• The survival function:

$$
S(t|x) = e^{-H(t|x)} = e^{-e^{x\beta}H_0(t)} = \left[e^{-H_0(t)}\right]^{e^{x\beta}} = S_0(t)^{e^{x\beta}}
$$

Part-time students (S_1) survive much worse: $S(t|x=1) \approx S_0(t)^{e^{1.210}} \approx S_0(t)^{3.353}$, higher power $e^{x\beta}$ makes $S(t|x)$ more $convex.$

Hazards:

$$
h(t|x=1) = h_0(t) \cdot e^{1.210} = h_0(t) \cdot 3.353
$$

The hazards are indeed proportional, and if graphed on a log scale they would be parallel.

The Cox Proportional Hazards Model Model Diagnostics

• PH implies proportional integrated hazards:

$$
H(t|x) = \int_0^t h(s|x)ds = e^{x\beta} \int_0^t h_0(s)ds = H_0(t)e^{x\beta}
$$

\n
$$
\Rightarrow \ln H(t|x) = \ln H_0(t) + x\beta
$$

Therefore under PH, the log-integrated hazard curves $\ln H(t|x)$ (the log-log survivor curves), should be parallel at different values of the time invariant regressors x (as there is no t in $x\beta$) \rightarrow a graphical test on PH

Model Diagnostics

² The predicted survivor function from Cox regression and the (nonregression) Kaplan-Meier estimate (observed) of the survivor function should be similar if PH is appropriate. \rightarrow another graphical test on PH

The PH model is reasonable for female but does not do so well for part time.

Model Diagnostics

 \bullet A formal residual-based statistical test on the key assumption of the Cox model: separable components, duration part $h_0(t)$ and regressors part $e^{x\beta}.$ Under the standard PH assumption, there should be no time (duration/spell length) trend in the regressors part. Rejection of the null (no time trend / zero slope) indicates a deviation from the proportional-hazards assumption.

Test of proportional-hazards assumption

Time function: Analysis time

Stratified Cox Model

- If some variable does not fulfill the PH assumption, we can use it as a strata (group) variable.
- In the stratified Cox model, we relax the assumption that everyone faces the same baseline hazard.
- The baseline hazards are allowed to differ by group, while the coefficients β are constrained to be the same across groups. Ex: $h_g(t|x) = h_{0g}(t) e^{x \beta}$, where q indicates the gender groups.

The cost of this model is that the effect of female is not identified.

Time-Varying Covariates Extended Cox Model

- There are cases that require time-varying covariates: e.g., when one is repeatedly unemployed, the macroeconomic conditions change.
- **•** Extended Cox model:

$$
h(t|x) = h_0(t)e^{x_t\beta}
$$

• For two individuals i and j ,

$$
\frac{h(t|x_{it})}{h(t|x_{jt})} = \frac{h_0(t)e^{x_{it}\beta}}{h_0(t)e^{x_{jt}\beta}} = e^{(x_{it} - x_{jt})\beta}
$$

This hazard ratio between two individuals is a function of t , the PH assumption no longer holds.

Estimation: in the likelihood, x_i is replaced by $x_i(t_j)$...

Parametric Models

Proportional hazard specification: $h(t|x) = h_0(t) e^{x \beta} \rightarrow \text{flexible}$ hazard functions

Semi-parametric model:

$$
\text{Cox PH:} \quad h(t|x) = \underbrace{h_0(t)}_{\text{unparametricized}} e^{x\beta}
$$

Parametric models:

Weibull: $h(t|x) = h_0(t, \alpha, \gamma) \cdot e^{x\beta} = \alpha t^{\alpha - 1} e^{\gamma} \cdot e^{x\beta} \rightarrow (\alpha, \gamma, \beta)$ Exponential: $h(t|x) = h_0(t, \alpha) \cdot e^{x\beta} = e^{\alpha} \cdot e^{x\beta} \rightarrow (\alpha, \beta)$

Notice that there is no constant term in vector x .

The estimates from the parametric PH model should be roughly similar to that from the Cox model. Otherwise there is evidence of a misparameterized underlying baseline hazard.

Parametric Models Comparison

Standard errors in parentheses

* D<0.05, ** D<0.01, *** D<0.001

- Better model fit but counterintuitive signs of coef. for some models?
- Can be more precise on coef.; Low robustness to distribution misspecification.

Hazards from Various Models

Figure 1: Hazard rates from various models, evaluated at the mean of the regressors

Exponential: constant hazard; Weibull: monotonic hazard; Loglogistic and Lognormal: inverted U-shaped hazard; Cox PH: flexible hazard. $27/33$

Unobserved Heterogeneity

In duration analysis, the unobserved heterogeneity will lead to inconsistent estimates even if it's not correlated with the explanatory variables 1 . Consider for example that there are groups of unemployed people that differ by the unobserved skill level, which will affect their hazard function.

$$
h_i(t) = h_0(t)\alpha_i e^{x_i \beta}, \ \alpha_i > 0
$$

$$
= h_0(t)e^{x_i \beta + \nu_i}, \ \nu_i = \ln \alpha_i
$$

The unobserved heterogeneity enters the hazard function multiplicatively: α_i (which can also be extended to a group-level effect α_g). The log effect ν_i is analogous to random effects² in panel data.

 1 Unlike in linear models, where the estimates will be consistent if the unobserved heterogeneity is not correlated with the regressors.

²The effects α_i are assumed to be random and follow a predefined distribution.

.

Unobserved Heterogeneity

 $\overline{}$

```
. streg, dist(weibull) frailty(invgau) vce(robust) nolog
nohr 3
```
Weibull PH rearession Inverse-Gaussian frailty

• The log likelihood increases from -535.6177 (the Cox PH with 6 regressors) to -318.1151.

³You can check the code TA4.do for an example of Cox PH with Gamma-distributed random effects.

Unobserved Heterogeneity

[Discrete Duration](#page-34-0)

Discrete-time hazards

• The T periods indexed by $t = 1, \ldots, T$ are grouped into A intervals indexed by $a = 1, \ldots, A$, unequally spaced intervals are allowed.

$$
h(t_a|x) = \mathbb{P}(t_{a-1} \leq T < t_a|T \geq t_{a-1}, x(t_{a-1}))
$$

- Why discrete durations is a problem: we need to consider three indexes i, t, a in the derivation.
	- PH model of continuous durations:

$$
h(t|x) = h_0(t)e^{x\beta}
$$

PH model of discrete durations associated with the continuous model:

$$
h(t|x) = h_0(t)e^{x(t_{a-1})\beta}
$$

The regressors are constant within the interval (a) but can vary across intervals, and $h_0(t)$ can vary within the interval (a).

Discrete-time hazards

• Two solutions:

- **1** Use index a, group $h_0(t)$ (more common)
	- Consider a binary choice model for transitions:

 $d = \begin{cases} 1, & \text{if the spell ends} \\ 0, & \text{otherwise.} \end{cases}$ 0, otherwise

And we fit a simple (stacked) Logit model on it:

$$
\mathbb{P}(t_{a-1} \leq T < t_a | T \geq t_{a-1}, x) = F(h_a + x(t_{a-1})\beta)
$$

where β is restricted to be constant over time, and the intercept h_a is allowed to vary across intervals.

 \bullet Use index t, add group indicators for each a (dummies for each interval a are included as regressors)

Complementary log-log: equivalent to a Cox PH, also called a grouped Cox PH.

Discrete-time hazards

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

[Appendix](#page-38-0)

References

- Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: methods and applications. Cambridge university press. Chapter 17.
- Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press. Chapter 22.
- Cameron, A. C., & Trivedi, P. K. (2022). Microeconometrics using stata (Second Edition). Stata press. Chapter 21.
- Cleves, M., Gould, W., Gould, W. W., Gutierrez, R., & Marchenko, Y. (2010). An introduction to survival analysis using Stata. Stata press.